Origin and uses
Dioscorine was first isolated from the tubers of ''Dioscorea hirsuta'' by Boorsma in 1894, and the tubers of ''Dioscorea hispida'' by Levya and Gutierrez in 1937. It was obtained in a crystalline condition by Schutte. In tropical lands, tubers from varieties of these species are eaten, but the alkaloid-bearing species are of toxicological interest because of their poisoning abilities. Dioscorine produces insecticidal and antifeedant responses in various species of insects, but has more interesting historical applications. These are dependent on the geographical location of the specific tuber (Table 1). Poisoning from dioscorine first appeared from accidental food poisoning from the yam, especially during periods of severe drought in many parts of Africa. People then began making the distinction between edible and toxic plants, and put the toxins to use in hunting. Cases of poisoning have officially been reported since the 1930s but had been happening earlier.Chemical Properties
Dioscorine is an alkaloid with a 6-membered nitrogen-containing heterocycle. Pinder extensively discussed the method of extraction of and the chemical substitution of dioscorine (Figure 1). From his studies, Pinder also concluded that 2-oxotropane is a degradation product of dioscorine and described the formula of the alkaloid. Dioscorine derives its basic nature and nucleophilicity from the tertiary amine and carbonyl functional groups. Dioscorine is completely soluble in a number of hydrophilic solvents (water, ethanol, acetone) but only slightly soluble in hydrophobic and mostly polar solvents (chloroform, ether, benzene, petroleum ether). Alkaloids are generally pale yellow liquids with an aromatic smell. Dioscorine is opalescent, that is, it appears yellowish-red in transmitted light and blue in scattered light perpendicular to the transmitted light.Biosynthesis
Dioscorine is one of few alkaloids to possess an isolated isoquinuclide nucleus that is not part of a condensed ring system, unlike catharanthine or other indole alkaloids. Its biosynthesis starts with trigonelline (nicotinic acid methylated at the nitrogen). The pathway was anticipated by the known reactivity of trigonelline. The process yields dumetorine as a side product. Dumetorine is an alkaloid that can be isolated from ''Dioscorea dumetorum''.Biological Effects
Dioscorine is aPharmacological Effects
Symptoms
In humans, physiological responses range from dizziness, nausea, vomiting and sleepiness. At large doses, convulsions result, and death usually occurs in extensor spasms. The interaction of dioscorine with the nAChR also results in local anesthetic effects: dioscorine in 0.5% solution has approximately the same activity as 0.05% cocaine. Dioscorine also shows antidiuretic activity and depressant actions.Toxicity
Dioscorine is reported to be one of the most potent alkaloid toxins isolated from yam. It has an LD50 of 60 mg/kg in mice through an intraperitoneal route of administration. When injected into monkeys, it has a mydriatic action (that is, it causes the pupils to dilate), and resembles the pharmacological action of picrotoxin and cardiac glycosides.Diagnostic tests
Van Itallie and Bylsma, in 1930, described the following chemical tests for dioscorine: 1) A solution of this alkaloid in sulfuric acid turns yellow when a small amount of iodic acid is added to it. From the edge, the yellow color changes slowly to reddish-violet. Which in turn changes to bluish-violet. 2) When a drop of diluted solution of sodium nitroprusside and a few drops of sodium hydroxide are mixed with dioscorine, a reddish-violet color appears after a short while. 3) If dioscorine is heated with sulfuric acid on a water bath, a reddish-violet color appears slowly.Treatment (Antidote)
Since dioscorine is as a cholinergic receptor ligand, any stronger agonist of the nAChR can serve as valid antidote of dioscorine. If added in a concentration higher than dioscorine, it can competitively displace the latter from the receptor. Several developed antidotes are aza-bridged bicyclic amine derivatives.Pubchem.ncbi.nlm.nih.gov,. Aza-bridged bicyclic amine derivatives for use as novel cholinergic receptor ligands https://pubchem.ncbi.nlm.nih.gov/patents/?id=US2005137225 (accessed Mar 15, 2015). An anesthetic, pentobarbital sodium, was often administered to mice during toxicity experiments involving dioscorine. Convulsions in humans can be readily antagonized with this compound.References
{{Nicotinic acetylcholine receptor modulators Alkaloids Nicotinic antagonists Plant toxins Delta-lactones Spiro compounds Convulsants