Dimictic
   HOME

TheInfoList



OR:

A dimictic lake is a body of freshwater whose difference in temperature between surface and bottom layers becomes negligible twice per year, allowing all strata of the lake's water to circulate vertically. All dimictic lakes are also considered
holomictic Holomictic lakes are lakes that have a uniform temperature and density from surface to bottom at a specific time during the year, which allows the lake waters to mix in the absence of stratification. Details Holomictic lakes mix at least occa ...
, a category which includes all lakes which mix one or more times per year. During winter, dimictic lakes are covered by a layer of ice, creating a cold layer at the surface, a slightly warmer layer beneath the ice, and a still-warmer unfrozen bottom layer, while during summer, the same temperature-derived density differences separate the warm surface waters (the
epilimnion The epilimnion or surface layer is the top-most layer in a thermally stratified lake. The epilimnion is the layer that is most affected by sunlight, its thermal energy heating the surface, thereby making it warmer and less dense. As a result ...
), from the colder bottom waters (the
hypolimnion The hypolimnion or under lake is the dense, bottom layer of water in a thermally- stratified lake. The word " hypolimnion" is derived from . It is the layer that lies below the thermocline. Typically the hypolimnion is the coldest layer of a la ...
). In the spring and fall, these temperature differences briefly disappear, and the body of water overturns and circulates from top to bottom. Such lakes are common in mid-latitude regions with temperate climates.


Examples of dimictic lakes

*
Lake Mendota Lake Mendota is a freshwater eutrophic lake that is the northernmost and largest of the four lakes in Madison, Wisconsin, Madison, Wisconsin. The lake borders Madison on the north, east, and south, Middleton, Wisconsin, Middleton on the west, Sho ...
*
Lake Superior Lake Superior is the largest freshwater lake in the world by surface areaThe Caspian Sea is the largest lake, but is saline, not freshwater. Lake Michigan–Huron has a larger combined surface area than Superior, but is normally considered tw ...
*
Lake Simcoe Lake Simcoe is a lake in southern Ontario, Canada, the fourth-largest lake wholly within the province, after Lake Nipigon, Lac Seul, and Lake Nipissing. At the time of the first European contact in the 17th century, the lake was called ''Ouentir ...
* Lake Opeongo *
Loch Lomond Loch Lomond (; ) is a freshwater Scottish loch which crosses the Highland Boundary Fault (HBF), often considered the boundary between the lowlands of Central Scotland and the Highlands.Tom Weir. ''The Scottish Lochs''. pp. 33-43. Published by ...
*
Lake Altaussee Lake Altaussee, also known as Altausseersee, is a mountain lake located at the southwestern foot of the Totes Gebirge in the Styrian part of the Salzkammergut Mountains, Salzkammergut. It lies at 712 m above sea level. The center of the municipa ...


Seasonal cycles of mixing and stratification

Mixing (overturning) typically occurs during the spring and autumn, when the lake is "isothermal" (i.e. at the same temperature from the top to the bottom). At this time, the water throughout the lake is near 4 °C (the temperature of maximum density), and, in the absence of any temperature or density differences, the lake readily mixes from top to bottom. During winter any additional cooling below 4 °C results in stratification of water column, so dimictic lakes usually have an inverse thermal stratification, with water at 0 °C below ice and then with temperatures increasing to near 4 °C at the lake's base.


Spring overturn

Once the ice melts, the water column can be mixed by the wind. In large lakes the upper water column is often below 4 °C when the ice melts, so that spring is characterized by continued mixing by solar driven convection, until the water column reaches 4 °C. In small lakes, the period of spring overturn can be very brief, so that spring overturn is often much shorter than the fall overturn. As the upper water column warms past 4 °C a
thermal stratification Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the epilimnion, comprising the top warm layer; the thermocline (or metalimnion), ...
starts to develop.


Summer stratification

During summer, the heat fluxes from the atmosphere to a lake warms the surface layers. This results in dimictic lakes have a strong thermal stratification, with a warm
epilimnion The epilimnion or surface layer is the top-most layer in a thermally stratified lake. The epilimnion is the layer that is most affected by sunlight, its thermal energy heating the surface, thereby making it warmer and less dense. As a result ...
separated from the cold
hypolimnion The hypolimnion or under lake is the dense, bottom layer of water in a thermally- stratified lake. The word " hypolimnion" is derived from . It is the layer that lies below the thermocline. Typically the hypolimnion is the coldest layer of a la ...
by the metalimnion. Within the
metalimnion A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct te ...
there is a
thermocline A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct te ...
, usually defined as the region where temperature gradients exceed 1 °C/m. Due to the stable density gradient, mixing is inhibited within the thermocline, which reduces the vertical transport of
dissolved oxygen Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It can ...
. If a lake is
eutrophic Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of organisms that may deplete the oxygen in the water; ie. the process of too many plants growing on the s ...
and has a high sediment oxygen demand, the hypolimnion in dimictic lakes can become hypoxic during summer stratification, as often seen in
Lake Erie Lake Erie ( ) is the fourth-largest lake by surface area of the five Great Lakes in North America and the eleventh-largest globally. It is the southernmost, shallowest, and smallest by volume of the Great Lakes and also has the shortest avera ...
. During summer stratification, most lakes are observed to experience
internal wave Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in ...
s due to energy input from winds. If the lake is small (less than 5 km in length), then the period of the internal seiche is well predicted by the Merian formulae. Long period internal waves in larger lakes can be influenced by
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
s (due to the Earth's rotation). This is expected to occur when the period of internal seiche becomes comparable to the local inertial period, which is 16.971 hours at a latitude of 45 °
(link to Coriolis utility).
In large lakes (such a
Lake Simcoe Lake Simcoe is a lake in southern Ontario, Canada, the fourth-largest lake wholly within the province, after Lake Nipigon, Lac Seul, and Lake Nipissing. At the time of the first European contact in the 17th century, the lake was called ''Ouentir ...
,
Lake Geneva Lake Geneva is a deep lake on the north side of the Alps, shared between Switzerland and France. It is one of the List of largest lakes of Europe, largest lakes in Western Europe and the largest on the course of the Rhône. Sixty percent () ...
,
Lake Michigan Lake Michigan ( ) is one of the five Great Lakes of North America. It is the second-largest of the Great Lakes by volume () and depth () after Lake Superior and the third-largest by surface area (), after Lake Superior and Lake Huron. To the ...
or
Lake Ontario Lake Ontario is one of the five Great Lakes of North America. It is bounded on the north, west, and southwest by the Canadian province of Ontario, and on the south and east by the U.S. state of New York (state), New York. The Canada–United Sta ...
) the observed frequencies of internal seiches are dominated by Poincaré waves and
Kelvin wave A Kelvin wave is a wave in the ocean, a large lake or the atmosphere that balances the Earth's Coriolis force against a topographic boundary such as a coastline, or a waveguide such as the equator. A feature of a Kelvin wave is that it is non-d ...
s.


Fall overturn

In late summer, air temperatures drop and the surface of lakes cool, resulting in a deeper mixed layer, until at some point the water column becomes isothermal, and generally high in dissolved oxygen. During fall a combination of wind and cooling air temperatures continue to keep the water column mixed. The water continues to cool until the temperature reaches 4 °C. Often fall overturn can last for 3–4 months.


Winter inverse stratification

After the water column reaches the temperature of maximum density at 4°C, any subsequent cooling produces less dense water due to non-linearity of equation of state of water. Early winter is thus a period of restratification. If there is relatively little wind, or the lake is deep, only a thin layer of buoyant cold water forms above denser 4°C waters and the lake will be "cryostratified" once ice forms. If the lake experiences strong winds or is shallow, then the whole water column can cool to near 0°C before ice forms, these colder lakes are termed "cryomictic". Once ice forms on a lake, the heat fluxes from the atmosphere are largely shut down and the initial cyrostratified or cryomictic conditions are largely locked in. The development of thermal stratification during winter is then defined by two periods: Winter I and Winter II. During the early winter period of Winter I the major heat flux is due to heat stored in sediment; during this period the lake heats up from beneath forming a deep layer of 4 °C water. During late winter, the surface ice starts to melt and with the increased length of the day, there is increased sunlight that penetrates through the ice into the upper water column. Thus during Winter II, the major heat flux is now from above, and the warming causes an unstable layer to form, resulting in solar driven convection. This mixing of the upper water column is important for keeping plankton in suspension, which in turn influences the timing of under-ice algal blooms and levels of dissolved oxygen. Coriolis forces can also become important in driving circulation patterns due to differential heating by solar radiation. The winter period of lakes is probably the least studied, but the chemistry and biology are still very active under the ice.


See also

*
Amictic Amictic lakes are "perennially sealed off by ice, from most of the annual seasonal variations in temperature." Amictic lakes exhibit inverse cold water stratification whereby water temperature increases with depth below the ice surface 0 °C ...
*
Holomictic Holomictic lakes are lakes that have a uniform temperature and density from surface to bottom at a specific time during the year, which allows the lake waters to mix in the absence of stratification. Details Holomictic lakes mix at least occa ...
*
Meromictic A meromictic lake is a lake which has layers of water that do not intermix. In ordinary, holomictic lakes, at least once each year, there is a physical mixing of the surface and the deep waters. The term ''meromictic'' was coined by the Austria ...
*
Monomictic Monomictic lakes are holomictic lakes that mix from top to bottom during one mixing period each year. Monomictic lakes may be subdivided into cold and warm types. Cold monomictic lakes Cold monomictic lakes are lakes that are covered by ice throu ...
*
Polymictic Polymictic lakes are holomictic lakes that are too shallow to develop thermal stratification; thus, their waters can mix from top to bottom throughout the ice-free period. Polymictic lakes can be divided into cold polymictic lakes (i.e., those th ...
*
Thermocline A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct te ...


References

{{reflist


External links


"Circulation: annual patterns of dimictic lakes" at Encyclopædia Britannica Online
Lakes by type