HOME

TheInfoList



OR:

In geometry, a line is an infinitely long object with no width, depth, or
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
in everyday life, which has two
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as
non-Euclidean In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geo ...
, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineerin ...
, a line in the plane is often defined as the set of points whose coordinates satisfy a given
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficien ...
, but in a more abstract setting, such as incidence geometry, a line may be an independent object, distinct from the set of points which lie on it. When a geometry is described by a set of
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s, the notion of a line is usually left undefined (a so-called
primitive Primitive may refer to: Mathematics * Primitive element (field theory) * Primitive element (finite field) * Primitive cell (crystallography) * Primitive notion, axiomatic systems * Primitive polynomial (disambiguation), one of two concepts * Pr ...
object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry. Thus in
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, a line may be interpreted as a
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
(shortest path between points), while in some projective geometries, a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line.


Properties

When geometry was first formalised by Euclid in the ''
Elements Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of ...
'', he defined a general line (now called a ''
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
'') to be "breadthless length" with a straight line being a line "which lies evenly with the points on itself". These definitions serve little purpose, since they use terms which are not by themselves defined. In fact, Euclid himself did not use these definitions in this work, and probably included them just to make it clear to the reader what was being discussed. In modern geometry, a line is simply taken as an undefined object with properties given by
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s, but is sometimes defined as a set of points obeying a linear relationship when some other fundamental concept is left undefined. In an
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
atic formulation of Euclidean geometry, such as that of Hilbert (Euclid's original axioms contained various flaws which have been corrected by modern mathematicians), a line is stated to have certain properties which relate it to other lines and
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
. For example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect in at most one point. In two dimensions (i.e., the Euclidean plane), two lines which do not intersect are called parallel. In higher dimensions, two lines that do not intersect are parallel if they are contained in a plane, or skew if they are not. On an
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
, a line can be represented as a boundary between two regions. Any collection of finitely many lines partitions the plane into convex polygons (possibly unbounded); this partition is known as an arrangement of lines.


In higher dimensions

In three-dimensional space, a first degree equation in the variables ''x'', ''y'', and ''z'' defines a plane, so two such equations, provided the planes they give rise to are not parallel, define a line which is the intersection of the planes. More generally, in ''n''-dimensional space ''n''−1 first-degree equations in the ''n'' coordinate variables define a line under suitable conditions. In more general Euclidean space, R''n'' (and analogously in every other affine space), the line ''L'' passing through two different points ''a'' and ''b'' (considered as vectors) is the subset L = \left\ The direction of the line is from ''a'' (''t'' = 0) to ''b'' (''t'' = 1), or in other words, in the direction of the vector ''b'' − ''a''. Different choices of ''a'' and ''b'' can yield the same line.


Collinear points

Three points are said to be ''collinear'' if they lie on the same line. Three points ''
usually A convention is a set of agreed, stipulated, or generally accepted standards, norms, social norms, or criteria, often taking the form of a custom. In a social context, a convention may retain the character of an "unwritten law" of custom (for e ...
'' determine a plane, but in the case of three collinear points this does ''not'' happen. In affine coordinates, in ''n''-dimensional space the points ''X'' = (''x''1, ''x''2, ..., ''x''''n''), ''Y'' = (''y''1, ''y''2, ..., ''y''''n''), and ''Z'' = (''z''1, ''z''2, ..., ''z''''n'') are collinear if the
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
\begin 1 & x_1 & x_2 & \cdots & x_n \\ 1 & y_1 & y_2 & \cdots & y_n \\ 1 & z_1 & z_2 & \cdots & z_n \end has a rank less than 3. In particular, for three points in the plane (''n'' = 2), the above matrix is square and the points are collinear if and only if its determinant is zero. Equivalently for three points in a plane, the points are collinear if and only if the slope between one pair of points equals the slope between any other pair of points (in which case the slope between the remaining pair of points will equal the other slopes). By extension, ''k'' points in a plane are collinear if and only if any (''k''–1) pairs of points have the same pairwise slopes. In Euclidean geometry, the Euclidean distance ''d''(''a'',''b'') between two points ''a'' and ''b'' may be used to express the collinearity between three points by: :The points ''a'', ''b'' and ''c'' are collinear if and only if ''d''(''x'',''a'') = ''d''(''c'',''a'') and ''d''(''x'',''b'') = ''d''(''c'',''b'') implies ''x'' = ''c''. However, there are other notions of distance (such as the Manhattan distance) for which this property is not true. In the geometries where the concept of a line is a primitive notion, as may be the case in some synthetic geometries, other methods of determining collinearity are needed.


Types

In a sense, all lines in Euclidean geometry are equal, in that, without coordinates, one can not tell them apart from one another. However, lines may play special roles with respect to other objects in the geometry and be divided into types according to that relationship. For instance, with respect to a conic (a circle,
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
, parabola, or hyperbola), lines can be: * tangent lines, which touch the conic at a single point; * secant lines, which intersect the conic at two points and pass through its interior;. * exterior lines, which do not meet the conic at any point of the Euclidean plane; or * a directrix, whose distance from a point helps to establish whether the point is on the conic. In the context of determining parallelism in Euclidean geometry, a transversal is a line that intersects two other lines that may or not be parallel to each other. For more general algebraic curves, lines could also be: * ''i''-secant lines, meeting the curve in ''i'' points counted without multiplicity, or * asymptotes, which a curve approaches arbitrarily closely without touching it. With respect to triangles we have: * the Euler line, * the Simson lines, and * central lines. For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. () For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that never cross. Intersecting lines share a single point in common. Coincidental lines coincide with each other—every point that is on either one of them is also on the other.
Perpendicular lines In elementary geometry, two geometric objects are perpendicular if they intersection, intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ...
are lines that intersect at
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
s. In three-dimensional space, skew lines are lines that are not in the same plane and thus do not intersect each other.


In axiomatic systems

The concept of line is often considered in geometry as a primitive notion in axiomatic systems, meaning it is not being defined by other concepts. In those situations where a line is a defined concept, as in coordinate geometry, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s which they must satisfy. In a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance, it is possible to provide a ''description'' or ''mental image'' of a primitive notion, to give a foundation to build the notion on which would formally be based on the (unstated) axioms. Descriptions of this type may be referred to, by some authors, as definitions in this informal style of presentation. These are not true definitions, and could not be used in formal proofs of statements. The "definition" of line in Euclid's Elements falls into this category. Even in the case where a specific geometry is being considered (for example, Euclidean geometry), there is no generally accepted agreement among authors as to what an informal description of a line should be when the subject is not being treated formally.


Definition


Linear equation

Lines in a Cartesian plane or, more generally, in affine coordinates, are characterized by linear equations. More precisely, every line L (including vertical lines) is the set of all points whose
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
(''x'', ''y'') satisfy a linear equation; that is, L = \, where ''a'', ''b'' and ''c'' are fixed real numbers (called
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s) such that ''a'' and ''b'' are not both zero. Using this form, vertical lines correspond to equations with ''b'' = 0. One can further suppose either or , by dividing everything by if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the ''standard form''. If the constant term is put on the left, the equation becomes ax + by - c = 0, and this is sometimes called the ''general form'' of the equation. However, this terminology is not universally accepted, and many authors do not distinguish these two forms. These forms are generally named by the type of information (data) about the line that is needed to write down the form. Some of the important data of a line is its slope, x-intercept, known points on the line and y-intercept. The equation of the line passing through two different points P_0( x_0, y_0 ) and P_1(x_1, y_1) may be written as (y - y_0)(x_1 - x_0) = (y_1 - y_0)(x - x_0). If , this equation may be rewritten as y=(x-x_0)\,\frac+y_0 or y=x\,\frac+\frac\,.In two dimensions, the equation for non-vertical lines is often given in the '' slope-intercept form'': y = mx + b where: * ''m'' is the slope or gradient of the line. * ''b'' is the y-intercept of the line. * ''x'' is the
independent variable Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or demand ...
of the function . The slope of the line through points A(x_a, y_a) and B(x_b, y_b), when x_a \neq x_b, is given by m = (y_b - y_a)/(x_b - x_a) and the equation of this line can be written y = m (x - x_a) + y_a.


Parametric equation

Parametric equations are also used to specify lines, particularly in those in three dimensions or more because in more than two dimensions lines ''cannot'' be described by a single linear equation. In three dimensions lines are frequently described by parametric equations: \begin x &= x_0 + at \\ y &= y_0 + bt \\ z &= z_0 + ct \end where: * ''x'', ''y'', and ''z'' are all functions of the independent variable ''t'' which ranges over the real numbers. * (''x''0, ''y''0, ''z''0) is any point on the line. * ''a'', ''b'', and ''c'' are related to the slope of the line, such that the direction vector (''a'', ''b'', ''c'') is parallel to the line. Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector. As a note, lines in three dimensions may also be described as the simultaneous solutions of two
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficien ...
s a_1 x + b_1 y + c_1 z - d_1 = 0 a_2 x + b_2 y + c_2 z - d_2 = 0 such that (a_1,b_1,c_1) and (a_2,b_2,c_2) are not proportional (the relations a_1 = t a_2, b_1 = t b_2, c_1 = t c_2 imply t = 0). This follows since in three dimensions a single linear equation typically describes a plane and a line is what is common to two distinct intersecting planes.


Hesse normal form

The ''normal form'' (also called the ''Hesse normal form'', after the German mathematician Ludwig Otto Hesse), is based on the '' normal segment'' for a given line, which is defined to be the line segment drawn from the origin perpendicular to the line. This segment joins the origin with the closest point on the line to the origin. The normal form of the equation of a straight line on the plane is given by: x \cos \varphi + y \sin \varphi - p = 0 , where \varphi is the angle of inclination of the normal segment (the oriented angle from the unit vector of the -axis to this segment), and is the (positive) length of the normal segment. The normal form can be derived from the standard form ax + by = c by dividing all of the coefficients by \frac\sqrt. Unlike the slope-intercept and intercept forms, this form can represent any line but also requires only two finite parameters, \varphi and , to be specified. If , then \varphi is uniquely defined modulo . On the other hand, if the line is through the origin (), one drops the term to compute \sin\varphi and \cos\varphi, and it follows that \varphi is only defined modulo .


Other representations


Vectors

The vector equation of the line through points A and B is given by \mathbf = \mathbf + \lambda\, \mathbf (where λ is a scalar). If a is vector OA and b is vector OB, then the equation of the line can be written: \mathbf = \mathbf + \lambda (\mathbf - \mathbf). A ray starting at point ''A'' is described by limiting λ. One ray is obtained if λ ≥ 0, and the opposite ray comes from λ ≤ 0.


Polar coordinates

In a Cartesian plane, polar coordinates are related to
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
by the parametric equations:x=r\cos\theta, \quad y=r\sin\theta. In polar coordinates, the equation of a line not passing through the origin—the point with coordinates —can be written r = \frac p , with and \varphi-\pi/2 < \theta < \varphi + \pi/2. Here, is the (positive) length of the
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
perpendicular to the line and delimited by the origin and the line, and \varphi is the (oriented) angle from the -axis to this segment. It may be useful to express the equation in terms of the angle \alpha=\varphi+\pi/2 between the -axis and the line. In this case, the equation becomes r=\frac p , with and 0 < \theta < \alpha + \pi. These equations can be derived from the normal form of the line equation by setting x = r \cos\theta, and y = r \sin\theta, and then applying the angle difference identity for sine or cosine. These equations can also be proven
geometrically Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
by applying right triangle definitions of sine and cosine to the right triangle that has a point of the line and the origin as vertices, and the line and its perpendicular through the origin as sides. The previous forms do not apply for a line passing through the origin, but a simpler formula can be written: the polar coordinates (r, \theta) of the points of a line passing through the origin and making an angle of \alpha with the -axis, are the pairs (r, \theta) such that r\ge 0,\qquad \text \quad \theta=\alpha \quad\text\quad \theta=\alpha +\pi.


Projective geometry

In many models of projective geometry, the representation of a line rarely conforms to the notion of the "straight curve" as it is visualised in Euclidean geometry. In elliptic geometry we see a typical example of this. In the spherical representation of elliptic geometry, lines are represented by
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geomet ...
s of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean
planes Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
passing through the origin. Even though these representations are visually distinct, they satisfy all the properties (such as, two points determining a unique line) that make them suitable representations for lines in this geometry. The "shortness" and "straightness" of a line, interpreted as the property that the distance along the line between any two of its points is minimized (see triangle inequality), can be generalized and leads to the concept of
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s in metric spaces.


Extensions


Ray

Given a line and any point ''A'' on it, we may consider ''A'' as decomposing this line into two parts. Each such part is called a ray and the point ''A'' is called its ''initial point''. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray. Intuitively, a ray consists of those points on a line passing through ''A'' and proceeding indefinitely, starting at ''A'', in one direction only along the line. However, in order to use this concept of a ray in proofs a more precise definition is required. Given distinct points ''A'' and ''B'', they determine a unique ray with initial point ''A''. As two points define a unique line, this ray consists of all the points between ''A'' and ''B'' (including ''A'' and ''B'') and all the points ''C'' on the line through ''A'' and ''B'' such that ''B'' is between ''A'' and ''C''. This is, at times, also expressed as the set of all points ''C'' on the line determined by ''A'' and ''B'' such that ''A'' is not between ''B'' and ''C''. A point ''D'', on the line determined by ''A'' and ''B'' but not in the ray with initial point ''A'' determined by ''B'', will determine another ray with initial point ''A''. With respect to the ''AB'' ray, the ''AD'' ray is called the ''opposite ray''. Thus, we would say that two different points, ''A'' and ''B'', define a line and a decomposition of this line into the disjoint union of an open segment and two rays, ''BC'' and ''AD'' (the point ''D'' is not drawn in the diagram, but is to the left of ''A'' on the line ''AB''). These are not opposite rays since they have different initial points. In Euclidean geometry two rays with a common endpoint form an angle. The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically Euclidean geometry or affine geometry over an ordered field. On the other hand, rays do not exist in projective geometry nor in a geometry over a non-ordered field, like the complex numbers or any finite field.


Line segment

A
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
is a part of a line that is bounded by two distinct end points and contains every point on the line between its end points. Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are coplanar and either do not intersect or are collinear.


Number line

A point on number line corresponds to a real number and vice versa. Usually, integers are evenly spaced on the line, with positive numbers are on the right, negative numbers on the left. As an extension to the concept, an
imaginary line In general, an imaginary line is usually any sort of geometric line that has only an abstract definition and does not physically exist. In fact, they are used to properly identify places on a map. Some outside geography do exist, such as th ...
representing imaginary numbers can be drawn perpendicular to the number line at zero.. The two lines forms the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
, a geometrical representation of the set of complex numbers.


In graphics design


See also

*
Affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
*
Curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
* Distance between two parallel lines * Distance from a point to a line * Imaginary line (mathematics) * Incidence (geometry) *
Line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
* Generalised circle * Locus * Plane (geometry) * Polyline


References


External links

*
Equations of the Straight Line
at
Cut-the-Knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...
{{DEFAULTSORT:Line (Geometry) Elementary geometry Analytic geometry Mathematical concepts