Dilute Magnetic Semiconductor
   HOME

TheInfoList



OR:

Magnetic semiconductors are
semiconductor material A semiconductor is a material with electrical conductivity between that of a Electrical conductor, conductor and an Insulator (electricity), insulator. Its conductivity can be modified by adding impurities ("doping (semiconductor), doping") to ...
s that exhibit both
ferromagnetism Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
(or a similar response) and useful
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of
charge carrier In solid state physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. ...
s ( n- or p-type), practical magnetic semiconductors would also allow control of quantum spin state (up or down). This would theoretically provide near-total
spin polarization In particle physics, spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of co ...
(as opposed to
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
and other metals, which provide only ~50% polarization), which is an important property for
spintronics Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-st ...
applications, e.g. spin transistors. While many traditional magnetic materials, such as
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula . It is one of the iron oxide, oxides of iron, and is ferrimagnetism, ferrimagnetic; it is attracted to a magnet and can be magnetization, magnetized to become a ...
, are also semiconductors (magnetite is a
semimetal A semimetal is a material with a small energy overlap between the bottom of the Electrical conduction, conduction Electronic band structure, band and the top of the valence band, but they do not overlap in momentum space. According to Band theory ...
semiconductor with
bandgap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the ...
0.14 eV), materials scientists generally predict that magnetic semiconductors will only find widespread use if they are similar to well-developed semiconductor materials. To that end, dilute magnetic semiconductors (DMS) have recently been a major focus of magnetic semiconductor research. These are based on traditional semiconductors, but are doped with
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
s instead of, or in addition to, electronically active elements. They are of interest because of their unique
spintronics Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-st ...
properties with possible technological applications. Doped wide band-gap metal oxides such as
zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
(ZnO) and
titanium oxide Titanium oxide may refer to: * Titanium dioxide (titanium(IV) oxide), TiO2 * Titanium(II) oxide (titanium monoxide), TiO, a non-stoichiometric oxide * Titanium(III) oxide (dititanium trioxide), Ti2O3 * Ti3O * Ti2O * δ-TiOx (x= 0.68–0.75) * Ti ...
(TiO2) are among the best candidates for industrial DMS due to their multifunctionality in opticomagnetic applications. In particular, ZnO-based DMS with properties such as transparency in visual region and
piezoelectricity Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The piezoel ...
have generated huge interest among the scientific community as a strong candidate for the fabrication of spin transistors and spin-polarized
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corre ...
s, while
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
doped TiO2 in the
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
phase of this material has further been predicted to exhibit favorable dilute magnetism.
Hideo Ohno Hideo Ohno (; Hideo Ōno; born 18 December 1954, Tokyo) is a Japanese physicist. He is the 22nd president of Tohoku University, succeeding Susumu Satomi in April 2018. Biography Ohno received B.S., M.S. and Ph.D. degrees from the University ...
and his group at the
Tohoku University is a public research university in Sendai, Miyagi, Japan. It is colloquially referred to as or . Established in 1907 as the third of the Imperial Universities, after the University of Tokyo and Kyoto University, it initially focused on sc ...
were the first to measure
ferromagnetism Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
in transition metal doped
compound semiconductors Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because of ...
such as
indium arsenide Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is similar in properties to gallium ars ...
and
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
doped with
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
(the latter is commonly referred to as
GaMnAs Gallium manganese arsenide, chemical formula is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide, (chemical formula ), and readily compatible with existing semiconductor technologies. D ...
). These materials exhibited reasonably high
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie ...
s (yet below
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
) that scales with the concentration of p-type charge carriers. Ever since, ferromagnetic signals have been measured from various semiconductor hosts doped with different transition atoms.


Theory

The pioneering work of Dietl ''et al.'' showed that a modified Zener model for magnetism well describes the carrier dependence, as well as anisotropic properties of
GaMnAs Gallium manganese arsenide, chemical formula is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide, (chemical formula ), and readily compatible with existing semiconductor technologies. D ...
. The same theory also predicted that room-temperature
ferromagnetism Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
should exist in heavily p-type doped ZnO and GaN doped by Co and Mn, respectively. These predictions were followed of a flurry of theoretical and experimental studies of various oxide and nitride semiconductors, which apparently seemed to confirm room temperature ferromagnetism in nearly any semiconductor or insulator material heavily doped by
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
impurities. However, early
Density functional theory Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
(DFT) studies were clouded by band gap errors and overly delocalized defect levels, and more advanced DFT studies refute most of the previous predictions of ferromagnetism. Likewise, it has been shown that for most of the oxide based materials studies for magnetic semiconductors do not exhibit an intrinsic ''carrier-mediated'' ferromagnetism as postulated by Dietl ''et al.'' To date,
GaMnAs Gallium manganese arsenide, chemical formula is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide, (chemical formula ), and readily compatible with existing semiconductor technologies. D ...
remains the only semiconductor material with robust coexistence of ferromagnetism persisting up to rather high Curie temperatures around 100–200 K.


Materials

The manufacturability of the materials depend on the thermal equilibrium
solubility In chemistry, solubility is the ability of a chemical substance, substance, the solute, to form a solution (chemistry), solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form su ...
of the
dopant A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optics, optical properties. The amount of dopant is typically very low compared to the material b ...
in the base material. E.g., solubility of many dopants in
zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
is high enough to prepare the materials in bulk, while some other materials have so low solubility of dopants that to prepare them with high enough dopant concentration thermal nonequilibrium preparation mechanisms have to be employed, e.g. growth of
thin film A thin film is a layer of materials ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
s. Permanent magnetization has been observed in a wide range of semiconductor based materials. Some of them exhibit a clear correlation between carrier density and magnetization, including the work of T. Story and co-workers where they demonstrated that the ferromagnetic Curie temperature of Mn2+-doped Pb1−xSnxTe can be controlled by the carrier concentration. The theory proposed by Dietl required
charge carriers In solid state physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. In ...
in the case of
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
to mediate the
magnetic coupling A magnetic coupling is a component which transfers torque from one shaft to another using a magnetic field, rather than a physical mechanical connection. They are also known as magnetic drive couplings, magnetic shaft couplings, or magnetic disc co ...
of manganese
dopant A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optics, optical properties. The amount of dopant is typically very low compared to the material b ...
s in the prototypical magnetic semiconductor, Mn2+-doped
GaAs Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circui ...
. If there is an insufficient hole concentration in the magnetic semiconductor, then the
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie ...
would be very low or would exhibit only
paramagnetism Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
. However, if the hole concentration is high (>~1020 cm−3), then the
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie ...
would be higher, between 100 and 200 K. However, many of the semiconductor materials studied exhibit a permanent magnetization ''extrinsic'' to the semiconductor host material. A lot of the elusive extrinsic ferromagnetism (or ''phantom ferromagnetism'') is observed in thin films or nanostructured materials. Several examples of proposed ferromagnetic semiconductor materials are listed below. Notice that many of the observations and/or predictions below remain heavily debated. *
Manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
-doped
indium arsenide Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is similar in properties to gallium ars ...
and
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
(
GaMnAs Gallium manganese arsenide, chemical formula is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide, (chemical formula ), and readily compatible with existing semiconductor technologies. D ...
), with Curie temperature around 50–100 K and 100–200 K, respectively * Manganese-doped
indium antimonide Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow- gap semiconductor material from the III- V group used in infrared detectors, including thermal imaging cameras, FLIR sy ...
, which becomes ferromagnetic even at room temperature and even with less than 1% Mn. * Oxide semiconductors ** Manganese- and
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
-doped
indium oxide Indium(III) oxide ( In2 O3) is a chemical compound, an amphoteric oxide of indium. Physical properties Crystal structure Amorphous indium oxide is insoluble in water but soluble in acids, whereas crystalline indium oxide is insoluble in both wat ...
, ferromagnetic at room temperature. The ferromagnetism appears to be mediated by carrier-electrons, in a similar way as the
GaMnAs Gallium manganese arsenide, chemical formula is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide, (chemical formula ), and readily compatible with existing semiconductor technologies. D ...
ferromagnetism is mediated by carrier-holes. **
Zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
*** Manganese-doped
zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
*** n-type cobalt-doped
zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
**
Magnesium oxide Magnesium oxide (MgO), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions ...
: *** p-type transparent MgO films with cation vacancies, combining ferromagnetism and multilevel switching (
memristor A memristor (; a portmanteau of ''memory resistor'') is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of ...
) **
Titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or Colour Index Internationa ...
: ***
Cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
-doped
titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or Colour Index Internationa ...
(both
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at vis ...
and
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
), ferromagnetic above 400 K ***
Chromium Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal. Chromium ...
-doped
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at vis ...
, ferromagnetic above 400 K ***
Iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
-doped rutile and iron-doped anatase, ferromagnetic at room temperature ***
Copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
-doped
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
***
Nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
-doped
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
**
Tin dioxide Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in ti ...
*** Manganese-doped
tin dioxide Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in ti ...
, with Curie temperature at 340 K *** Iron-doped
tin dioxide Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in ti ...
, with Curie temperature at 340 K *** Strontium-doped tin dioxide () – Dilute magnetic semiconductor. Can be synthesized an
epitaxial Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
thin film on a silicon chip. **
Europium(II) oxide Europium(II) oxide (EuO) is a chemical compound which is one of the oxides of europium. In addition to europium(II) oxide, there is also europium(III) oxide and the mixed valence europium(II,III) oxide. Preparation Europium(II) oxide can be prepa ...
, with a Curie temperature of 69K. The curie temperature can be more than doubled by doping (e.g. oxygen deficiency, Gd). *
Nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
semiconductors ** Chromium doped
aluminium nitride Aluminium nitride ( Al N) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potent ...
*(Ba,K)(Zn,Mn)2As2: Ferromagnetic semiconductor with tetragonal average structure and orthorhombic local structure.


References


External links

* * {{DEFAULTSORT:Magnetic Semiconductor Semiconductor material types Spintronics Ferromagnetic materials de:Halbleiter#Semimagnetische Halbleiter