
Diffuse reflection is the
reflection of
light
Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
or other
waves
United States Naval Reserve (Women's Reserve), better known as the WAVES (for Women Accepted for Volunteer Emergency Service), was the women's branch of the United States Naval Reserve during World War II. It was established on July 21, 1942, ...
or
particles from a surface such that a
ray incident on the surface is
scattered at many
angle
In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s rather than at just one angle as in the case of
specular reflection
Specular reflection, or regular reflection, is the mirror-like reflection (physics), reflection of waves, such as light, from a surface.
The law of reflection states that a reflected ray (optics), ray of light emerges from the reflecting surf ...
. An ''ideal'' diffuse reflecting surface is said to exhibit
Lambertian reflection, meaning that there is equal
luminance
Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls wit ...
when viewed from all directions lying in the
half-space adjacent to the surface.
A surface built from a non-absorbing powder such as
plaster, or from fibers such as paper, or from a
polycrystalline material such as white
marble
Marble is a metamorphic rock consisting of carbonate minerals (most commonly calcite (CaCO3) or Dolomite (mineral), dolomite (CaMg(CO3)2) that have recrystallized under the influence of heat and pressure. It has a crystalline texture, and is ty ...
, reflects light diffusely with great efficiency. Many common materials exhibit a mixture of specular and diffuse reflection.
The visibility of objects, excluding light-emitting ones, is primarily caused by diffuse reflection of light: it is diffusely-scattered light that forms the image of the object in an observer's eye over a wide range of angles of the observer with respect to the object.
Mechanism

Diffuse reflection from solids is generally not due to surface roughness. A flat surface is indeed required to give specular reflection, but it does not prevent diffuse reflection. A piece of highly polished white marble remains white; no amount of polishing will turn it into a mirror. Polishing produces some specular reflection, but the remaining light continues to be diffusely reflected.
The most general mechanism by which a surface gives diffuse reflection does not involve ''exactly'' the surface: most of the light is contributed by
scattering centers beneath the surface, as illustrated in Figure 1.
If one were to imagine that the figure represents snow, and that the polygons are its (transparent) ice crystallites, an impinging ray is partially reflected (a few percent) by the first particle, enters in it, is again reflected by the interface with the second particle, enters in it, impinges on the third, and so on, generating a series of "primary" scattered rays in random directions, which, in turn, through the same mechanism, generate a large number of "secondary" scattered rays, which generate "tertiary" rays, and so forth. All these rays walk through the snow crystallites, which do not absorb light, until they arrive at the surface and exit in random directions. The result is that the light that was sent out is returned in all directions, so that snow is white despite being made of transparent material (ice crystals).
For simplicity, "reflections" are spoken of here, but more generally the interface between the small particles that constitute many materials is irregular on a scale comparable with light wavelength, so diffuse light is generated at each interface, rather than a single reflected ray, but the story can be told the same way.
This mechanism is very general, because almost all common materials are made of "small things" held together. Mineral materials are generally
polycrystalline: one can describe them as made of a 3D mosaic of small, irregularly shaped defective crystals. Organic materials are usually composed of fibers or cells, with their membranes and their complex internal structure. And each interface, inhomogeneity or imperfection can deviate, reflect or scatter light, reproducing the above mechanism.
Few materials do not cause diffuse reflection: among these are metals, which do not allow light to enter; gases, liquids, glass, and transparent plastics (which have a liquid-like
amorphous
In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
microscopic structure);
single crystals, such as some gems or a salt crystal; and some very special materials, such as the tissues which make the
cornea
The cornea is the transparency (optics), transparent front part of the eyeball which covers the Iris (anatomy), iris, pupil, and Anterior chamber of eyeball, anterior chamber. Along with the anterior chamber and Lens (anatomy), lens, the cornea ...
and the
lens
A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
of an eye. These materials can reflect diffusely, however, if their surface is microscopically rough, like in a
frost glass (Figure 2), or, of course, if their homogeneous structure deteriorates, as in
cataract
A cataract is a cloudy area in the lens (anatomy), lens of the eye that leads to a visual impairment, decrease in vision of the eye. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colours, blurry or ...
s of the eye lens.
A surface may also exhibit both specular and diffuse reflection, as is the case, for example, of
glossy paint
Paint is a material or mixture that, when applied to a solid material and allowed to dry, adds a film-like layer. As art, this is used to create an image or images known as a painting. Paint can be made in many colors and types. Most paints are ...
s as used in home painting, which give also a fraction of specular reflection, while
matte paints give almost exclusively diffuse reflection.
Most materials can give some specular reflection, provided that their surface can be polished to eliminate irregularities comparable with the light wavelength (a fraction of a micrometer). Depending on the material and surface roughness, reflection may be mostly specular, mostly diffuse, or anywhere in between. A few materials, like liquids and glasses, lack the internal subdivisions which produce the subsurface scattering mechanism described above, and so give ''only'' specular reflection. Among common materials, only polished metals can reflect light specularly with high efficiency, as in aluminum or silver usually used in mirrors. All other common materials, even when perfectly polished, usually give not more than a few percent specular reflection, except in particular cases, such as
grazing angle reflection by a lake, or the ''
total reflection'' of a glass prism, or when structured in certain complex configurations such as the silvery skin of many fish species or the reflective surface of a
dielectric mirror. Diffuse reflection can be highly efficient, as in white materials, due to the summing up of the many subsurface reflections.
Colored objects
Up to this point white objects have been discussed, which do not absorb light. But the above scheme continues to be valid in the case that the material is absorbent. In this case, diffused rays will lose some wavelengths during their walk in the material, and will emerge colored.
Diffusion affects the color of objects in a substantial manner because it determines the average path of light in the material, and hence to which extent the various wavelengths are absorbed.
[Paul Kubelka, Franz Munk (1931), ''Ein Beitrag zur Optik der Farbanstriche'', Zeits. f. Techn. Physik, 12, 593–601, se]
''The Kubelka-Munk Theory of Reflectance''
Red ink looks black when it stays in its bottle. Its vivid color is only perceived when it is placed on a scattering material (e.g. paper). This is so because light's path through the paper fibers (and through the ink) is only a fraction of millimeter long. However, light from the bottle has crossed several centimeters of ink and has been heavily absorbed, even in its red wavelengths.
And, when a colored object has both diffuse and specular reflection, usually only the diffuse component is colored. A cherry reflects diffusely red light, absorbs all other colors and has a specular reflection which is essentially white (if the incident light is white light). This is quite general, because, except for metals, the reflectivity of most materials depends on their
refractive index
In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
, which varies little with the wavelength (though it is this variation that causes the
chromatic dispersion in a
prism), so that all colors are reflected nearly with the same intensity.
Importance for vision
The vast majority of visible objects are seen primarily by diffuse reflection from their surface.
Exceptions include objects with polished (specularly reflecting) surfaces, and objects that themselves emit light.
Rayleigh scattering
Rayleigh scattering ( ) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scat ...
is responsible for the blue color of the sky, and
Mie scattering for the white color of the water droplets in clouds.
Interreflection
''Diffuse interreflection'' is a process whereby
light
Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
reflected from an object strikes other objects in the surrounding area, illuminating them. Diffuse interreflection specifically describes light reflected from objects which are not shiny or
specular. In real life terms what this means is that light is reflected off non-shiny surfaces such as the ground, walls, or fabric, to reach areas not directly in view of a light source. If the diffuse surface is
color
Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
ed, the reflected light is also colored, resulting in similar coloration of surrounding objects.
In
3D computer graphics
3D computer graphics, sometimes called Computer-generated imagery, CGI, 3D-CGI or three-dimensional Computer-generated imagery, computer graphics, are graphics that use a three-dimensional representation of geometric data (often Cartesian coor ...
, diffuse interreflection is an important component of
global illumination. There are a number of ways to model diffuse interreflection when rendering a scene.
Radiosity and
photon mapping are two commonly used methods.
Spectroscopy
Diffuse reflectance spectroscopy can be used to determine the absorption spectra of powdered samples in cases where transmission spectroscopy is not feasible. This applies to
UV-Vis-NIR spectroscopy or
mid-infrared spectroscopy.
See also
*
Diffuser
*
List of reflected light sources
*
Oren–Nayar reflectance model
*
Reflectivity
The reflectance of the surface of a material is its effectiveness in Reflection (physics), reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the respon ...
*
Remission
References
{{DEFAULTSORT:Diffuse Reflection
Optical phenomena
Shading