Desorption electrospray ionization (DESI) is an
ambient ionization technique that can be coupled to
mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
(MS) for
chemical analysis
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separati ...
of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems allow for chemical determinations of samples. DESI employs a fast-moving charged solvent stream, at an angle relative to the sample surface, to extract analytes from the surfaces and propel the secondary ions toward the mass analyzer. This tandem technique can be used to analyze forensics analyses,
pharmaceuticals, plant tissues, fruits, intact biological tissues, enzyme-substrate complexes, metabolites and polymers.
Therefore, DESI-MS may be applied in a wide variety of sectors including food and
drug administration
A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the medical field and ...
, pharmaceuticals, environmental monitoring, and biotechnology.
History
DESI has been widely studied since its inception in 2004 by Zoltan Takáts, Justin Wiseman and Bogdan Gologan, in
Graham Cooks' group from Purdue University
with the goal of looking into methods that didn't require the sample to be inside of a vacuum. Both DESI and
direct analysis in real time (DART) have been largely responsible for the rapid growth in ambient ionization techniques, with a proliferation of more than eighty new techniques being found today. These methods allow for complex systems to be analyzed without preparation and throughputs as high as 45 samples a minute. DESI is a combination of popular techniques, such as, electrospray ionization and surface desorption techniques. Electrospray ionization with mass spectrometry was reported by
Malcolm Dole in 1968, but
John Bennett Fenn
John Bennett Fenn (June 15, 1917December 10, 2010) was an American professor of analytical chemistry who was awarded a share of the Nobel Prize in Chemistry in 2002. Fenn shared half of the award with Koichi Tanaka for their work in mass spectro ...
was awarded a nobel prize in chemistry for the development of ESI-MS in the late 1980s.
Then in 1999, desorption of open surface and free matrix experiments were reported in the literature utilizing an experiment that was called
desorption/ionization on silicon. The combination of these two advancements led to the introduction of DESI and DART as the main ambient ionization techniques that would later become multiple different techniques. One in particular, due to increasing studies into optimization of DESI, is
nanospray desorption electrospray ionization (nano-DESI). In this technique the analyte is desorbed into a liquid bridge formed between two capillaries and the analysis surface.
Principle of operation

DESI is a combination of
electrospray (ESI) and desorption (DI) ionization methods.
Ionization takes place by directing an electrically charged mist to the sample surface that is a few millimeters away.
The electrospray mist is pneumatically directed at the sample where subsequent splashed droplets carry desorbed, ionized analytes. After ionization, the ions travel through air into the atmospheric pressure interface which is connected to the mass spectrometer. DESI is a technique that allows for ambient ionization of a trace sample at atmospheric pressure, with little sample preparation. DESI can be used to investigate in situ, secondary metabolites specifically looking at both spatial and temporal distributions.
Ionization mechanism
In DESI there are two kinds of ionization mechanism, one that applies to low molecular weight molecules and another to high molecular weight molecules.
High molecular weight molecules, such as proteins and peptides show electrospray like spectra where multiply charged ions are observed. This suggests desorption of the analyte, where multiple charges in the droplet can easily be transferred to the analyte. The charged droplet hits the sample, spreads over a diameter greater than its original diameter, dissolves the
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
and rebounces. The droplets travel to the mass spectrometer inlet and are further desolvated. The solvent typically used for the electrospray is a combination of
methanol and
water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
.
For the low molecular weight molecules, ionization occurs by charge transfer: an
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary partic ...
or a
proton. There are three possibilities for the charge transfer. First, charge transfer between a solvent ion and an
analyte
An analyte, component (in clinical chemistry), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The purest substances are referred to as analytes, such as 24 karat gold, NaCl, water, et ...
on the surface. Second, charge transfer between a
gas phase
In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetizati ...
ion and analyte on the surface; in this case the solvent ion is evaporated before reaching the sample surface. This is achieved when the spray to surface distance is large. Third, charge transfer between a gas phase ion and a gas phase analyte molecule. This occurs when a sample has a high vapour pressure.
The ionization mechanism of low molecular weight molecules in DESI is similar to
DART's ionization mechanism, in that there is a charge transfer that occurs in the gas phase.
Ionization efficiency
The ionization efficiency of DESI is complex and depends on several parameters such as, surface effects, electrospray parameters, chemical parameters and geometric parameters.
Surface effects include chemical composition, temperature and electric potential applied. Electrospray parameters include electrospray voltage, gas and liquid flow rates.
Chemical parameters refers to the sprayed solvent composition, e.g. addition of NaCl. Geometric parameters are α, β, d
1 and d
2 (see figure on the right).
Furthermore, α and d
1 affect the
ionization efficiency, while β and d
2 affect the collection efficiency. Results of a test performed on a variety of molecules to determine optimal α and d1 values show that there are two sets of molecules: high molecular weight (proteins, peptides, oligosaccharide etc.) and low molecular weight (diazo dye, stereoids, caffeine, nitroaromatics etc.). The optimal conditions for the high molecular weight group are high incident angles (70-90°) and short d
1 distances (1–3 mm). The optimal conditions for the low molecular weight group are the opposite, low incident angles (35-50°) and long d
1 distances (7–10 mm). These test results indicate that each group of molecules has a different ionization mechanism; described in detail in the Principle of operation section.
The sprayer tip and the surface holder are both attached to a 3D moving stage which allow to select specific values for the four geometric parameters: α, β, d
1 and d
2.
Applications
Laser ablation electrospray ionization
Laser ablation electrospray ionization (LAESI) mass spectrometry is an ambient ionization technique applicable to plant and animal tissue imaging, live-cell imaging, and most recently to cell-by-cell imaging. This technique uses a mid-IR laser to ablate the sample which creates a cloud of neutral molecules. This cloud is then hit with the electrospray from above to cause ionization. The desorbed ions are then able to pass into the mass spectrometer for analysis. This method is also good for imaging in applications. The analyses can be desorbed through a pulsed laser irradiation without the need of a matrix. This method is best used with small organic molecules up to larger biomolecules as well.
Matrix assisted laser desorption electrospray ionization
Another method good for biomolecules is
Matrix assisted laser desorption electrospray ionization (MALDESI). In this technique, it utilizes Infrared laser ionization to excite the sample molecules to allow for the desorbed ions to be ready for MS analysis. The geometry of the source and the distance between the ESI and matrix will have and effect on the efficiency of the sample compound. This technique can also be used with aqueous samples as well. The water droplet can be placed at the focal point of the laser, or the droplet can be dried to form the solid. Planar samples do not need sample preparation to perform this experiment.
Ion mobility mass spectrometry
Ion mobility spectrometry (IMS) is a technique of ion separation in gaseous phases based on their differences in ion mobility when an electric field is applied providing spatial separation prior to MS analysis. With the introduction of DESI as an ion source for
ion mobility mass spectrometry
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by con ...
, applications for IMS have expanded from only vapor-phase samples with volatile analyses to also intact structures and aqueous samples. When coupled to a time-of-flight mass spectrometer, analysis of proteins is also possible.
These techniques work in tandem to one another to investigate ion shapes and reactiveness after ionization. A key characteristic of this setup is its ability to separate the distribution of ions generated in DESI prior to mass spectrometry analysis.
Fourier transform ion cyclotron resonance
As stated before, DESI allows for a direct investigation of natural samples without needing any sample preparation or chromatographic separation. But, because of this unneeded sample prep the spectrum created maybe very complex. Therefore, you can couple a
Fourier transform ion cyclotron resonance
Fourier-transform ion cyclotron resonance mass spectrometry is a type of mass analyzer (or mass spectrometer) for determining the mass-to-charge ratio (''m''/''z'') of ions based on the cyclotron frequency of the ions in a fixed magnetic field. ...
to DESI, allowing for a higher resolution. The DESI can be composed of six linear moving stages and one rotating stage. This can include a 3-D linear stage for samples and another with the rotating stage for the spray mount. Coupling of an FTICR to DESI can increase mass accuracy to below 3 parts per million. This can be done on both liquid and solid samples.
Liquid chromatography

DESI can be coupled to
ultra-fast liquid chromatography using an LC eluent splitting strategy. It is a strategy through a tiny orifice on an LC capillary tube. There is negligible dead volume and back pressure that allows for almost real time mass spectrometry detection with a fast elution and purification. This coupling can be used to ionize a wide range of molecules, from small organics to high mass proteins. This is different from ESI (electrospray ionization) in that it can be used to directly analyze salt-containing sample solutions without requiring “make-up” solvents/ acids to be doped into the sample. This set up allows for a high flow rate without splitting. The high resolution that is accomplished by
reverse-phase HPLC can be combined with this procedure to produce high throughput screening of natural products as well.
The incorporation of the electrochemistry component helps with ionization efficiency via the electrochemical conversion. This method is proved better than ESI in the fact that you don't have to separate the small potential that is applied to the cell from the potential on the spray in DESI. DESI also shows a better tolerance to inorganic salt electrolytes and you can use traditional solvents used in electrolysis.
Instrumentation
In DESI, there is a high-velocity pneumatically assisted electrospray jet that is continually directed towards the probe surface. The jet forms a micrometer-size thin solvent film on the sample where it can be desorbed. The sample can be dislodged by the incoming spray jet allowing for particles to come off in an ejection cone of analyte containing secondary ion droplets. A lot of study is still going into looking at the working principals of DESI but there are still some things known. The erosion diameter of the spray spot formed by DESI is known to be directly tied to the spatial resolution. Both the chemical composition and the texture of the surface will also affect the ionization process. The nebulizing gas used most commonly is N
2 set at a typical pressure of 160 psi. The solvent is a combination of
methanol and
water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
, sometimes paired with 0.5%
acetic acid
Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main componen ...
and at a flow rate of 10 μL/min.
The surface can be mounted it two different ways, one way consists of a surface holder that can carry 1 x 5 cm large disposable surface slides that lie on a stainless steel surface. The steel surface has a voltage applied to provide an appropriate surface potential. The surface potential that can be applied is the same at which the sprayer can be set at. The second surface is made with an aluminum block that has a built in heater, this allows for temperature control with temperatures up to 300 °C with newer stages having built in CCD's and light sources. Their spectra are that similar to ESI. They feature multiply charged ions alkali metal adducts and non covalent complexes that originate from the condensed phase of the sample/solvent interaction.
DESI is revealed to have a more gentle ionization condition that leads to a more pronounced tendency for metal adduct formation and a lower specific charging of secondary droplets.
See also
*
Secondary ion mass spectrometry
Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions ...
*
Matrix-assisted laser desorption ionization
In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of b ...
*
Mass spectrometry imaging
Mass spectrometry imaging (MSI) is a technique used in mass spectrometry to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. After collecting a mass spectrum at one spot ...
*
Electrospray ionization
Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules becau ...
*
Secondary electrospray ionization
References
Further reading
* ''Method and System for Desorption Electrospray Ionization'' -
*''Method and System for Desorption Electrospray Ionization'' -
*''Ionization by droplet impact'' -
External links
Purdue Aston Lab - DESIProfessor Zoltan Takáts personal page - Imperial College London
{{Mass spectrometry
Ion source
Mass spectrometry