Depolarizing Prepulse
   HOME

TheInfoList



OR:

A depolarizing prepulse (DPP) is an electrical stimulus that causes the
potential difference Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
measured across a
neuron A neuron, neurone, or nerve cell is an membrane potential#Cell excitability, electrically excitable cell (biology), cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous ...
al
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
to become more positive or less negative, and precedes another electrical stimulus. DPPs may be of either the voltage or current stimulus variety and have been used to inhibit neural activity, selectively excite neurons, and increase the pain threshold associated with electrocutaneous stimulation.


Biophysical mechanisms


Hodgkin–Huxley model

Typical
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
s are initiated by
voltage-gated sodium channels Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels and can be classified according to the trigger that opens the channel ...
. As the
transmembrane voltage Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charge ...
is increased the probability that a given voltage gated sodium channel is open is increased, thus enabling an influx of Na+ ions. Once the sodium inflow becomes greater than the potassium outflow, a
positive feedback Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in th ...
loop of sodium entry is closed and thus an action potential is fired. In the early 1950s Drs.
Hodgkin Hodgkin is a surname. Notable people with the surname include: * Alan Lloyd Hodgkin (1914–1998), British physiologist and biophysicist * Dorothy Hodgkin (1910–1994), British chemist who received the Nobel Prize in Chemistry in 1964, wife of Th ...
and Huxley performed experiments on the
squid giant axon The squid giant axon is the very large (up to 1.5 mm in diameter; typically around 0.5 mm) axon that controls part of the water jet propulsion system in squid. It was first described by L. W. Williams in 1909, but this discovery was for ...
, and in the process developed a model (the
Hodgkin–Huxley model The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical charac ...
) for sodium channel conductance. It was found that the conductance may be expressed as: : _ = \bar_ m^3h, where \bar_ is the maximum sodium conductance, ''m'' is the activation gate, and ''h'' is the inactivation gate (both gates are shown in the adjacent image). The values of ''m'' and ''h'' vary between 0 and 1, depending upon the transmembrane potential. As the
transmembrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
rises, the value of ''m'' increases, thus increasing the probability that the activation gate will be open. And as the transmembrane potential drops, the value of ''h'' increases, along with the probability that the inactivation gate will be open. The rate of change for an ''h'' gate is much slower than that of an ''m'' gate, therefore if one precedes a sub-threshold voltage stimulation with a hyperpolarizing prepulse, the value of ''h'' may be temporarily increased, enabling the neuron to fire an action potential. Vice versa, if one precedes a supra-threshold voltage stimulation with a depolarizing prepulse, the value of ''h'' may be temporarily reduced, enabling the inhibition of the neuron. An illustration of how the transmembrane voltage response to a supra-threshold stimulus may differ, based upon the presence of a depolarizing prepulse, may be observed in the adjacent image. The Hodgkin–Huxley model is slightly inaccurate as it fudges over some dependencies, for example the inactivation gate should not be able to close unless the activation gate is open and the inactivation gate, once closed, is located inside the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (the ...
where it cannot be directly affected by the transmembrane potential. However, this model is useful for gaining a high level understanding of hyperpolarizing and depolarizing prepulses. Depolarizing neurons creates a more likely out come of the neuron firing.


Voltage-gated sodium channel

Since the
Hodgkin–Huxley model The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical charac ...
was first proposed in the 1950s, much has been learned concerning the structure and functionality of voltage-gated
sodium channel Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels and can be classified according to the trigger that opens the channel ...
s. Although the exact three dimensional structure of the
sodium channel Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels and can be classified according to the trigger that opens the channel ...
remains unknown, its composition and the functionality of individual components have been determined. Voltage-gated sodium channels are large,
multimeric In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomer, monomers.Quote: ''Oligomer molecule: A molecule of intermediate ...
complexes, composed of a single α subunit and one or more β subunits, an illustration of which may be observed in the adjacent image. The α subunit folds into four homologous domains, each of which contain six α-
helical Helical may refer to: * Helix A helix () is a shape like a corkscrew or spiral staircase. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is ...
transmembrane segments. The S4 segments of each domain serve as voltage sensors for activation. Each S4 segment consists of a repeating structure of one positively charged residue and two
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, ...
residues, and these combine to form a helical arrangement. When the channel is depolarized these S4 segments undergo a conformational change that widens the helical arrangement and opens the sodium-channel
pore Pore may refer to: Biology Animal biology and microbiology * Sweat pore, an anatomical structure of the skin of humans (and other mammals) used for secretion of sweat * Hair follicle, an anatomical structure of the skin of humans (and other m ...
. Within milliseconds after the pore's opening, the intracellular loop that connects domains III and IV, binds to the channel's intracellular pore, inactivating the channel. Thus, by providing a depolarizing prepulse before a stimulus, there is a greater probability that the inactivating domains of the sodium channels have bound to their respective pores, reducing the stimulus induced sodium influx and the influence of the stimulus.


Depolarizing prepulse properties


DPP duration

The relationship between the DPP duration and neuronal recruitment is as follows. If the duration of the DPP is relatively short, i.e. much less than 100 μs, then the threshold of excitation for the surrounding nerves will be decreased as opposed to increased. Possibly resulting from the depolarization of the S4 segments and the little time given for inactivation. For long duration DPP's the III and IV domains of the sodium channels (discussed above) are given more time to bind with their respective channel pores, thus the threshold current is observed to increase with an increasing DPP duration.


DPP amplitude

As the DPP amplitude is increased from zero to near threshold, the resulting increase in threshold current will grow as well. This is because the higher amplitude activates more sodium channels, thus allowing more channels to become inactivated by their III and IV domains.


DPP inter-phase delay

An increase in the delay between the DPP and the stimulus provides more time during which the sodium channel S4 segments may close and the III and IV domains may detach themselves from their respective pores. Thus, an increase in the DPP inter-phase delay will reduce the effective increase in threshold current, induced by the DPP.


Depolarizing prepulse applications


Elevating pain thresholds

One immediate application for depolarizing prepulses, explored by Drs. Poletto and Van Doren, is to elevate the pain thresholds associated with electrocutaneous stimulation. Electrocutaneous stimulation possesses a great deal of potential as a mechanism for the conveyance of additional sensory information. Hence, this method of stimulation may be directly applied to fields such as
virtual reality Virtual reality (VR) is a simulated experience that employs pose tracking and 3D near-eye displays to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), e ...
,
sensory substitution Sensory substitution is a change of the characteristics of one sensory modality into stimuli of another sensory modality. A sensory substitution system consists of three parts: a sensor, a coupling system, and a stimulator. The sensor records stimu ...
, and sensory augmentation . However, many of these applications require the use of small electrode arrays, stimulation through which is often painful, thus limiting the usefulness of this technology. The experimental setup, constructed by Drs. Poletto and Van Doren, was as follows: *4 human subjects, each of which had demonstrated the ability to provide reliable pain judgments in previous studies *left middle finger rests on a 1 mm diameter polished stainless steel disk
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials ...
s *a single stimulus consisted of a burst of three identical prepulse and stim-pulse pairs, presented at the beginning, middle, and end of a 1-second interval *the prepulse and stim-pulse widths were matched at a duration of 10 milliseconds so that the thresholds would be the same for both *used varying prepulse amplitudes of 0%, 79%, 63%, 50%, 40%, and 32% so as to study their influence over the pain experienced *the experiments were conducted in such a way that the stimulus, without a prepulse was painful for about half of the time; this was achieved by stepping the stim-pulse amplitude up and down for the next trial, based upon whether it was reported as painful Their results demonstrated that a prepulse before a stimulus pulse effectively reduces the probability that pain will be experienced due to electrocutaneous stimulation. Surprisingly enough, a prepulse of 32% of the amplitude of the stimulus pulse was able to nearly half the probability of experiencing pain. Therefore, in environments in which the pain threshold is difficult to discern, it may be sufficient to deliver a relatively low amplitude prepulse before the stimulus to achieve the desired effects.


Nerve fiber recruitment order

In addition to inhibiting neural excitability, it has been observed that preceding an electrical stimulus with a depolarizing prepulse allows one to invert the current-distance relationship controlling
nerve fiber An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action p ...
recruitment, where the current-distance relationship describes how the threshold current for nerve fiber excitation is proportional to the square of the distance between the nerve fiber and the electrode. Therefore, if the region of influence for the depolarizing prepulse is less than that for the stimulus, the nerve fibers closer to the electrode will experience a greater increase in their threshold current for excitation. Thus, provided such a stimulus, the nerve fibers closest to the electrode may be inhibited, while those further away may be excited. A simulation of this stimulation, constructed by Drs. Warren Grill and J. Thomas Mortimer, may be observed in the adjacent image. Building upon this, a stimulus with two depolarizing prepulses, each of an amplitude slightly below the threshold current (at the time of delivery), should increase the radii of influence for nearby nerve fiber inactivation and distant nerve fiber excitation. Typically, nerve fibers of a larger diameter may be activated by single-pulse stimuli of a lower intensity, and thus may be recruited more readily. However, DPPs have demonstrated the additional capability to invert this recruitment order. As electrical stimuli have a greater effect over nerve fibers of a larger diameter, DPPs will in turn cause a larger degree of sodium conductance inactivation within such nerve fibers, thus nerve fibers of a smaller diameter will have a lower threshold current.


See also

*
Prepulse inhibition Prepulse inhibition (PPI) is a neurological phenomenon in which a weaker prestimulus (prepulse) inhibits the reaction of an organism to a subsequent strong reflex-eliciting stimulus (pulse), often using the startle reflex. The stimuli are usually ...


References


External links


Hodgkin-Huxley Model

Ball-and-Chain Model
{{DEFAULTSORT:Depolarizing Prepulse Neurology Neuroscience Electrophysiology