Demihexeractic Honeycomb
   HOME

TheInfoList



OR:

The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety ...
(or
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic cells built from beeswax by honey bees in their beehive, nests to contain their brood (eggs, larvae, and pupae) and stores of honey and pol ...
) in Euclidean 6-space. It is constructed as an alternation of the regular
6-cube honeycomb The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb (geometry), honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. Cons ...
. It is composed of two different types of
facet Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cu ...
s. The
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
s become alternated into
6-demicube In geometry, a 6-demicube, demihexeract or hemihexeract is a uniform 6-polytope, constructed from a ''6-cube'' ( hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercub ...
s h and the alternated vertices create
6-orthoplex In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 Vertex (geometry), vertices, 60 Edge (geometry), edges, 160 triangle Face (geometry), faces, 240 tetrahedron Cell (mathematics), cells, 192 5-cell ''4-faces'', and 64 ...
facets.


D6 lattice

The
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
of the 6-demicubic honeycomb is the D6 lattice. The 60 vertices of the
rectified 6-orthoplex In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex. There are unique 6 degrees of rectifications, the zeroth being the 6-orthoplex, and the 6th and last being the ...
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
of the ''6-demicubic honeycomb'' reflect the
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
60 of this lattice. The best known is 72, from the E6 lattice and the 222 honeycomb. The D lattice (also called D) can be constructed by the union of two D6 lattices. This packing is only a lattice for even dimensions. The kissing number is 25=32 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). : ∪ The D lattice (also called D and C) can be constructed by the union of all four 6-demicubic lattices: It is also the 6-dimensional
body centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
, the union of two
6-cube honeycomb The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb (geometry), honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. Cons ...
s in dual positions. : ∪ ∪ ∪ = ∪ . The
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
of the D6* lattice is 12 (''2n'' for n≥5). and its
Voronoi tessellation Voronoi or Voronoy is a Slavic masculine surname; its feminine counterpart is Voronaya. It may refer to *Georgy Voronoy (1868–1908), Russian and Ukrainian mathematician **Voronoi diagram **Weighted Voronoi diagram ** Voronoi deformation density ** ...
is a trirectified 6-cubic honeycomb, , containing all
birectified 6-orthoplex In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex. There are unique 6 degrees of rectifications, the zeroth being the 6-orthoplex, and the 6th and last being the ...
Voronoi cell In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane (calle ...
, .Conway (1998), p. 466


Symmetry constructions

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 64
6-demicube In geometry, a 6-demicube, demihexeract or hemihexeract is a uniform 6-polytope, constructed from a ''6-cube'' ( hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercub ...
facets around each vertex.


Related honeycombs


See also

*
6-cubic honeycomb The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. Constructions There are m ...


Notes


External links

* Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* {{DEFAULTSORT:Demihexeractic Honeycomb Honeycombs (geometry) 7-polytopes