Dedekind-finite Ring
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
is said to be a Dedekind-finite ring if ''ab'' = 1 implies ''ba'' = 1 for any two ring elements ''a'' and ''b''. In other words, all one-sided inverses in the ring are two-sided. These rings have also been called directly finite rings and von Neumann finite rings.


Properties

* Any finite ring is Dedekind-finite. * Any
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
of a Dedekind-finite ring is Dedekind-finite. * Any domain is Dedekind-finite. * Any left
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
is Dedekind-finite. * A unit-regular ring is Dedekind-finite. * A
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
is Dedekind-finite.


References


See also

*
Dedekind-infinite set In mathematics, a set ''A'' is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset ''B'' of ''A'' is equinumerous to ''A''. Explicitly, this means that there exists a bijective function from ''A'' onto s ...
*
Von Neumann regular ring In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the eleme ...
Ring theory {{abstract-algebra-stub