HOME

TheInfoList



OR:

__NOTOC__ In a statistical-classification problem with two classes, a decision boundary or decision surface is a
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Eucl ...
that partitions the underlying
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
into two sets, one for each class. The classifier will classify all the points on one side of the decision boundary as belonging to one class and all those on the other side as belonging to the other class. A decision boundary is the region of a problem space in which the output label of a classifier is ambiguous. If the decision surface is a
hyperplane In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
, then the classification problem is linear, and the classes are linearly separable. Decision boundaries are not always clear cut. That is, the transition from one class in the feature space to another is not discontinuous, but gradual. This effect is common in
fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and complet ...
based classification algorithms, where membership in one class or another is ambiguous. Decision boundaries can be approximations of optimal stopping boundaries. The decision boundary is the set of points of that hyperplane that pass through zero. For example, the angle between a vector and points in a set must be zero for points that are on or close to the decision boundary. Decision boundary instability can be incorporated with generalization error as a standard for selecting the most accurate and stable classifier.


In neural networks and support vector models

In the case of
backpropagation In machine learning, backpropagation (backprop, BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions gener ...
based
artificial neural network Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected units ...
s or
perceptron In machine learning, the perceptron (or McCulloch-Pitts neuron) is an algorithm for supervised classification, supervised learning of binary classification, binary classifiers. A binary classifier is a function which can decide whether or not an ...
s, the type of decision boundary that the network can learn is determined by the number of hidden layers the network has. If it has no hidden layers, then it can only learn linear problems. If it has one hidden layer, then it can learn any continuous function on compact subsets of Rn as shown by the
universal approximation theorem In the mathematical theory of artificial neural networks, universal approximation theorems are results that establish the density of an algorithmically generated class of functions within a given function space of interest. Typically, these resul ...
, thus it can have an arbitrary decision boundary. In particular,
support vector machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories ...
s find a
hyperplane In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
that separates the feature space into two classes with the maximum margin. If the problem is not originally linearly separable, the
kernel trick In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). The general task of pattern analysis is to find and study general types of relations (for example c ...
can be used to turn it into a linearly separable one, by increasing the number of dimensions. Thus a general hypersurface in a small dimension space is turned into a hyperplane in a space with much larger dimensions. Neural networks try to learn the decision boundary which minimizes the empirical error, while support vector machines try to learn the decision boundary which maximizes the empirical margin between the decision boundary and data points.


See also

* Discriminant function *
Hyperplane separation theorem In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in ''n''-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least on ...


References


Further reading

* {{DEFAULTSORT:Decision Boundary Classification algorithms Statistical classification Pattern recognition#Probabilistic classifiers