Db2-146
   HOME

TheInfoList



OR:

IM 67118, also known as Db2-146, is an
Old Babylonian Old Babylonian may refer to: *the period of the First Babylonian dynasty (20th to 16th centuries BC) *the historical stage of the Akkadian language Akkadian ( ; )John Huehnergard & Christopher Woods, "Akkadian and Eblaite", ''The Cambridge Enc ...
clay tablet In the Ancient Near East, clay tablets (Akkadian language, Akkadian ) were used as a writing medium, especially for writing in cuneiform, throughout the Bronze Age and well into the Iron Age. Cuneiform characters were imprinted on a wet clay t ...
in the collection of the
Iraq Museum The Iraq Museum () is the national museum of Iraq, located in Baghdad. It is sometimes informally called the National Museum of Iraq. The Iraq Museum contains precious relics from the Mesopotamian, Abbasid, and Persian civilizations. It was loo ...
that contains the solution to a problem in
plane geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
concerning a rectangle with given area and diagonal. In the last part of the text, the solution is proved correct using the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
. The steps of the solution are believed to represent cut-and-paste geometry operations involving a diagram from which, it has been suggested, ancient Mesopotamians might, at an earlier time, have derived the Pythagorean theorem.


Description

The tablet was excavated in 1962 at Tell edh-Dhiba'i, an Old Babylonian settlement near modern Baghdad that was once part of the kingdom of
Eshnunna Eshnunna (also Esnunak) (modern Tell Asmar in Diyala Governorate, Iraq) was an ancient Sumerian (and later Akkadian) city and city-state in central Mesopotamia 12.6 miles northwest of Tell Agrab and 15 miles northwest of Tell Ishchali. Althou ...
, and was published by
Taha Baqir Taha Baqir ( ') (born 1912 in Babylon, Ottoman Iraq – 28 February 1984) was an Iraqi Assyriologist, author, cuneiformist, linguist, historian, and former curator of the National Museum of Iraq. Baqir is considered one of Iraq's most eminent a ...
in the same year. It dates to approximately 1770 BCE (according to the
middle chronology The chronology of the ancient Near East is a framework of dates for various events, rulers and dynasties. Historical inscriptions and texts customarily record events in terms of a succession of officials or rulers: "in the year X of king Y". Com ...
), during the reign of
Ibal-pi-el II Ibal pi’el II was a king of the city kingdom of Eshnunna in ancient Mesopotamia. He reigned c. 1779–1765 BC). He was the son of Dadusha and nephew of Naram-Suen of Eshnunna. He conquered the cities of Diniktum and Rapiqum. With Ḫammu-r ...
, who ruled Eshnunna at the same time that
Hammurabi Hammurabi (; ; ), also spelled Hammurapi, was the sixth Amorite king of the Old Babylonian Empire, reigning from to BC. He was preceded by his father, Sin-Muballit, who abdicated due to failing health. During his reign, he conquered the ci ...
ruled
Babylon Babylon ( ) was an ancient city located on the lower Euphrates river in southern Mesopotamia, within modern-day Hillah, Iraq, about south of modern-day Baghdad. Babylon functioned as the main cultural and political centre of the Akkadian-s ...
. The tablet measures . Its language is Akkadian, written in
cuneiform Cuneiform is a Logogram, logo-Syllabary, syllabic writing system that was used to write several languages of the Ancient Near East. The script was in active use from the early Bronze Age until the beginning of the Common Era. Cuneiform script ...
script. There are 19 lines of text on the tablet's obverse and six on its reverse. The reverse also contains a diagram consisting of the rectangle of the problem and one of its diagonals. Along that diagonal is written its length in
sexagesimal Sexagesimal, also known as base 60, is a numeral system with 60 (number), sixty as its radix, base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified fo ...
notation; the area of the rectangle is written in the triangular region below the diagonal.


Problem and its solution

In modern mathematical language, the problem posed on the tablet is the following: a rectangle has area ''A'' = 0.75 and diagonal ''c'' = 1.25. What are the lengths ''a'' and ''b'' of the sides of the rectangle? The solution can be understood as proceeding in two stages: in stage 1, the quantity \sqrt is computed to be 0.25. In stage 2, the well-attested Old Babylonian method of completing the square is used to solve what is effectively the system of equations ''b'' − ''a'' = 0.25, ''ab'' = 0.75. Geometrically this is the problem of computing the lengths of the sides of a rectangle whose area ''A'' and side-length difference ''b''−''a'' are known, which was a recurring problem in Old Babylonian mathematics., p. 527 In this case it is found that ''b'' = 1 and ''a'' = 0.75. The solution method suggests that whoever devised the solution was using the property ''c''2 − 2''A'' = ''c''2 − 2''ab'' = (''b'' − ''a'')2. It must be emphasized, however, that the modern notation for equations and the practice of representing parameters and unknowns by letters were unheard of in ancient times. It is now widely accepted as a result of
Jens Høyrup Jens Egede Høyrup, born 1943 in Copenhagen, is a Danish historian of mathematics, specializing in pre-modern and early modern mathematics, ancient Mesopotamian mathematics in particular. He is especially known for his interpretation of what has o ...
's extensive analysis of the vocabulary of Old Babylonian mathematics, that underlying the procedures in texts such as IM 67118 was a set of standard cut-and-paste geometric operations, not a symbolic algebra. From the vocabulary of the solution Høyrup concludes that ''c''2, the square of the diagonal, is to be understood as a geometric square, from which an area equal to 2''A'' is to be "cut off", that is, removed, leaving a square with side ''b'' − ''a''. Høyrup suggests that the square on the diagonal was possibly formed by making four copies of the rectangle, each rotated by 90°, and that the area 2''A'' was the area of the four right triangles contained in the square on the diagonal. The remainder is the small square in the center of the figure. The geometric procedure for computing the lengths of the sides of a rectangle of given area ''A'' and side-length difference ''b'' − ''a'' was to transform the rectangle into a
gnomon A gnomon (; ) is the part of a sundial that casts a shadow. The term is used for a variety of purposes in mathematics and other fields, typically to measure directions, position, or time. History A painted stick dating from 2300 BC that was ...
of area ''A'' by cutting off a rectangular piece of dimensions ''a×''½(''b'' − ''a'') and pasting this piece onto the side of the rectangle. The gnomon was then completed to a square by adding a smaller square of side ½(''b'' − ''a'') to it., p. 260 In this problem, the side of the completed square is computed to be \sqrt=\sqrt=0.875. The quantity ½(''b'' − ''a'')=0.125 is then added to the horizontal side of the square and subtracted from the vertical side. The resulting line segments are the sides of the desired rectangle. One difficulty in reconstructing Old Babylonian geometric diagrams is that known tablets never include diagrams in solutions—even in geometric solutions where explicit constructions are described in text—although diagrams are often included in formulations of problems. Høyrup argues that the cut-and-paste geometry would have been performed in some medium other than clay, perhaps in sand or on a "dust abacus", at least in the early stages of a scribe's training before mental facility with geometric calculation had been developed. Friberg does describe some tablets containing drawings of "figures within figures", including MS 2192, in which the band separating two concentric equilateral triangles is divided into three trapezoids. He writes, "''The idea of computing the area of a triangular band as the area of a chain of trapezoids is a variation on the idea of computing the area of a square band as the area of a chain of four rectangles.'' This is a simple idea, and it is likely that it was known by Old Babylonian mathematicians, although no cuneiform mathematical text has yet been found where this idea enters in an explicit way." He argues that this idea is implicit in the text of IM 67118. He also invites a comparison with the diagram of YBC 7329, in which two concentric squares are shown. The band separating the squares is not subdivided into four rectangles on this tablet, but the numerical value of the area of one of the rectangles area does appear next to the figure.


Checking the solution

The solution ''b'' = 1, ''a'' = 0.75 is proved correct by computing the areas of squares with the corresponding side-lengths, adding these areas, and computing the side-length of the square with the resulting area, that is, by taking the square root. This is an application of the Pythagorean theorem, c=\sqrt, and the result agrees with the given value, ''c'' = 1.25. That the area is also correct is verified by computing the product, ''ab''.


Translation

The following translation is given by Britton,
Proust Valentin Louis Georges Eugène Marcel Proust ( ; ; 10 July 1871 – 18 November 1922) was a French novelist, literary critic, and essayist who wrote the novel (in French language, French – translated in English as ''Remembrance of Things Pas ...
, and Shnider and is based on the translation of Høyrup, which in turn is based on the hand copy and transliteration of Baqir, with some small corrections. Babylonian
sexagesimal Sexagesimal, also known as base 60, is a numeral system with 60 (number), sixty as its radix, base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified fo ...
numbers are translated into decimal notation with base-60 digits separated by commas. Hence 1,15 means 1 + 15/60 = 5/4 = 1.25. Note that there was no "sexagesimal point" in the Babylonian system, so the overall power of 60 multiplying a number had to be inferred from context. The translation is "conformal", which, as described by
Eleanor Robson Eleanor Robson, (born 1969) is a British Assyriologist and academic. She is Professor of Ancient Middle Eastern History at University College London. She is a former chair of the British Institute for the Study of Iraq and a Quondam fellow of ...
, "involves consistently translating Babylonian technical terms with existing English words or neologisms which match the original meanings as closely as possible"; it also preserves Akkadian word order. Old Babylonian mathematics used different words for multiplication depending on the underlying geometric context and similarly for the other arithmetic operations.
Obverse # If, about a (rectangle with) diagonal, (somebody) asks you # thus, 1,15 the diagonal, 45 the surface; # length and width corresponding to what? You, by your proceeding, # 1,15, your diagonal, its counterpart lay down: # make them hold: 1,33,45 comes up, # 1,33,45 may (?) your (?) hand hold (?) # 45 your surface to two bring: 1,30 comes up. # From 1,33,45 cut off: 3,45 the remainder. # The equalside of 3,45 take: 15 comes up. Its half-part, # 7,30 comes up, to 7,30 raise: 56,15 comes up # 56,15 your hand. 45 your surface over your hand, # 45,56,15 comes up. The equalside of 45,56,15 take: # 52,30 comes up, 52,30 its counterpart lay down, # 7,30 which you have made hold to one # append: from one # cut off. 1 your length, 45 the width. If 1 the length, # 45 the width, the surface and the diagonal corresponding to what? # (You by your) making, the length make hold: # (1 comes up ...) may your head hold. Reverse #
  • .. 45, the width, make hold:
  • # 33,45 comes up. To your length append: # 1,33,45 comes up. The equalside of 1,33,45 take: # 1,15 comes up. 1,15 your diagonal. Your length # to the width raise, 45 your surface. # Thus the procedure.
    The problem statement is given in lines 1–3, stage 1 of the solution in lines 3–9, stage 2 of the solution in lines 9–16, and verification of the solution in lines 16–24. Note that "1,15 your diagonal, its counterpart lay down: make them hold" means to form a square by laying down perpendicular copies of the diagonal, the "equalside" is the side of a square, or the square root of its area, "may your head hold" means to remember, and "your hand" may refer to "a pad or a device for computation".


    Relation to other texts

    Problem 2 on the tablet MS 3971 in the
    Schøyen collection __NOTOC__ The Schøyen Collection is one of the largest private manuscript collections in the world, mostly located in Oslo and London. Formed in the 20th century by the father of current owner Martin Schøyen, it comprises manuscripts of global ...
    , published by Friberg, is identical to the problem on IM 67118. The solution is very similar but proceeds by adding 2''A'' to ''c''2, rather than subtracting it. The side of the resulting square equals ''b'' + ''a'' = 1.75 in this case. The system of equations ''b'' + ''a'' = 1.75, ''ab'' = 0.75 is again solved by completing the square. MS 3971 contains no diagram and does not perform the verification step. Its language is "terse" and uses many Sumerian
    logograms In a written language, a logogram (from Ancient Greek 'word', and 'that which is drawn or written'), also logograph or lexigraph, is a written character that represents a semantic component of a language, such as a word or morpheme. Chinese ...
    in comparison with the "verbose" IM 67118, which is in syllabic Akkadian. Friberg believes this text comes from Uruk, in southern
    Iraq Iraq, officially the Republic of Iraq, is a country in West Asia. It is bordered by Saudi Arabia to Iraq–Saudi Arabia border, the south, Turkey to Iraq–Turkey border, the north, Iran to Iran–Iraq border, the east, the Persian Gulf and ...
    , and dates it before 1795 BCE. Friberg points out a similar problem in a 3rd-century BCE Egyptian Demotic papyrus, ''P. Cairo'', problems 34 and 35, published by Parker in 1972. Friberg also sees a possible connection to A.A. Vaiman's explanation of an entry in the Old Babylonian table of constants TMS 3, which reads, "57 36, constant of the šàr". Vaiman notes that the cuneiform sign for šàr resembles a chain of four right triangles arranged in a square, as in the proposed figure. The area of such a chain is 24/25 (equal to 57 36 in sexagesimal) if one assumes 3-4-5 right triangles with hypotenuse normalized to length 1. Høyrup writes that the problem of IM 67118 "turns up, solved in precisely the same way, in a Hebrew manual from 1116 ce".


    Significance

    Although the problem on IM 67118 is concerned with a specific rectangle, whose sides and diagonal form a scaled version of the 3-4-5 right triangle, the language of the solution is general, usually specifying the functional role of each number as it is used. In the later part of the text, an abstract formulation is seen in places, making no reference to particular values ("the length make hold", "Your length to the width raise."). Høyrup sees in this "an unmistakeable trace of the 'Pythagorean rule' in abstract formulation". The manner of discovery of the Pythagorean rule is unknown, but some scholars see a possible path in the method of solution used on IM 67118. The observation that subtracting 2''A'' from ''c''2 yields (''b'' − ''a'')2 need only be augmented by a geometric rearrangement of areas corresponding to ''a''2, ''b''2, and −2''A'' = −2''ab'' to obtain rearrangement proof of the rule, one which is well known in modern times and which is also suggested in the third century CE in Zhao Shuang's commentary on the ancient Chinese ''
    Zhoubi Suanjing The ''Zhoubi Suanjing'', also known by many other names, is an ancient Chinese astronomical and mathematical work. The ''Zhoubi'' is most famous for its presentation of Chinese cosmology and a form of the Pythagorean theorem. It claims to pr ...
    '' (''Gnomon of the Zhou'')., p. 261, p. 206 The formulation of the solution in MS 3971, problem 2, having no subtracted areas, provides a possibly even more straightforward derivation. Høyrup proposes the hypothesis, based in part on similarities among word problems that reappear over a broad range of times and places and on the language and numerical content of such problems, that much of the scribal Old Babylonian mathematical material was imported from the practical surveyor tradition, where solving riddle problems was used as a badge of professional skill. Høyrup believes that this surveyor culture survived the demise of Old Babylonian scribal culture that resulted from the Hittite conquest of Mesopotamia in the early 16th century BCE and that it influenced the mathematics of ancient Greece, of Babylon during the Seleucid period, of the Islamic empire, and of medieval Europe. Among the problems Høyrup ascribes to this practical surveyor tradition are several rectangle problems requiring completing the square, including the problem of IM 67118. On the basis that no third-millennium BCE references to the Pythagorean rule are known, and that the formulation of IM 67118 is already adapted to the scribal culture, Høyrup writes, "''To judge from this evidence alone'' it is therefore likely that the Pythagorean rule was discovered within the lay surveyors' environment, possibly as a spin-off from the problem treated in Db2-146, somewhere between 2300 and 1825 BC." Thus the rule named after
    Pythagoras Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
    , who was born about 570 BCE and died c.495 BCE, is shown to have been discovered about 12 centuries before his birth.


    See also

    *
    Plimpton 322 Plimpton 322 is a Babylonian clay tablet, believed to have been written around 1800 BC, that contains a mathematical table written in cuneiform script. Each row of the table relates to a Pythagorean triple, that is, a triple of integers (s ...
    *
    YBC 7289 YBC 7289 is a Babylonian clay tablet notable for containing an accurate sexagesimal approximation to the square root of 2, the length of the diagonal of a unit square. This number is given to the equivalent of six decimal digits, "the greatest kn ...


    Notes


    References

    * * * * * * * * * * * * *


    External links

    * The
    Cuneiform Digital Library Initiative The Cuneiform Digital Library Initiative (CDLI) is an international digital library project aimed at putting text and images of an estimated 500,000 recovered cuneiform tablets created from between roughly 3350 BC and the end of the pre-Christian e ...
    (CDLI) catalog has entries for tablets discussed in this article: ** The entry fo
    IM 67118
    includes Taha Baqir's hand copy of the tablet and photographs of the tablet. *
    MS 3179
    *
    MS 2192

    MS 2192
    at the Schøyen Collection.
    YBC 7359
    at the
    Yale Babylonian Collection Comprising some 45,000 items, the Yale Babylonian Collection is an independent branch of the Yale University Library housed on the Yale University campus in Sterling Memorial Library at New Haven, Connecticut, United States. In 2017, the coll ...
    .
    Lion de Tell Harmal (IM 52560), début du IIe millénaire
    containing a photograph of the reverse of the tablet and photographs of artifacts from nearby sites. {{Authority control Babylonian mathematics Mathematics manuscripts Clay tablets 18th-century BC works Collection of the National Museum of Iraq 1962 archaeological discoveries Archaeological discoveries in Iraq