Description
Principle
N6-methyladenine (m6A) is the product of the addition of a methyl group (CH3) at position 6 of the adenine. This modified nucleotide is absent from the vast majority of eukaryotes, with the exception of ''C. elegans'', but is widespread in bacterial genomes, as part of the restriction modification orMethyl PCR
In this assay the genome is digested by DpnI, which cuts only methylated GATCs. Double-stranded adapters with a known sequence are then ligated to the ends generated by DpnI. Ligation products are then digested by DpnII. This enzyme cuts non-methylated GATCs, ensuring that only fragments flanked by ''consecutive'' methylated GATCs are amplified in the subsequent PCR. A PCR with primers matching the adaptors is then carried out, leading to the specific amplification of genomic fragments flanked by methylated GATCs.Specificities of DamID versus Chromatin Immuno-Precipitation
Chromatin Immuno-Precipitation, or (ChIP), is an alternative method to assay protein binding at specific loci of the genome. Unlike ChIP, DamID does not require a specificKnown biases and technical issues
Plasmid methylation bias
Depending on how the experiment is carried out, DamID can be subject to plasmid methylation biases. Because plasmids are usually amplified in E. coli where Dam is naturally expressed, they are methylated on every GATC. In transient transfection experiments, the DNA of those plasmids is recovered along with the DNA of the transfected cells, meaning that fragments of the plasmid are amplified in the methyl PCR. Every sequence of the genome that shares homology or identity with the plasmid may thus appear to be bound by the protein of interest. In particular, this is true of theApoptosis
Apoptotic cells degrade their DNA in a characteristic nucleosome ladder pattern. This generates DNA fragments that can be ligated and amplified during the DamID procedure (van Steensel laboratory, unpublished observations). The influence of these nucleosomal fragments on the binding profile of a protein is not known.Resolution
The resolution of DamID is a function of the availability of GATC sequences in the genome. A protein can only be mapped within two consecutive GATC sites. The median spacing between GATC fragments is 205 bp in Drosophila (FlyBase release 5), 260 in mouse (Mm9), and 460 in human (HG19). A modified protocol (DamIP), which combines immunoprecipitation of m6A with a Dam variant with less specific target site recognition, may be used to obtain higher resolution data.Cell-type specific methods
A major advantage of DamID over ChIP seq is that profiling of protein binding sites can be assayed in a particular cell type ''in vivo'' without requiring the physical separation of a subpopulation of cells. This allows for investigation into developmental or physiological processes in animal models.Targeted DamID
The targeted DamID (TaDa) approach uses the phenomenon of ribosome reinitiation to express Dam-fusion proteins at appropriately low levels for DamID (i.e. Dam is non-saturating, thus avoiding toxicity). This construct can be combined with cell-type specific promoters resulting in tissue-specific methylation. This approach can be used to assay transcription factor binding in a cell type of interest or alternatively, dam can be fused to Pol II subunits to determine binding of RNA polymerase and thus infer cell-specific gene expression. Targeted DamID has been demonstrated in '' Drosophila'' and mouse cells.FRT/FLP-out DamID
Cell-specific DamID can also be achieved using recombination mediated excision of a transcriptional terminator cassette upstream of the Dam-fusion protein. The terminator cassette is flanked by FRT recombination sites which can be removed when combined with tissue specific expression of FLP recombinase. Upon removal of the cassette, the Dam-fusion is expressed at low levels under the control of a basal promoter.Variants
As well as detection of standard protein-DNA interactions, DamID can be used to investigate other aspects of chromatin biology.Split DamID
This method can be used to detect co-binding of two factors to the same genomic locus. The Dam methylase may be expressed in two halves which are fused to different proteins of interest. When both proteins bind to the same region of DNA, the Dam enzyme is reconstituted and is able to methylate the surrounding GATC sites.Chromatin accessibility
Due to the high activity of the enzyme, expression of untethered Dam results in methylation of all regions of accessible chromatin. This approach can be used as an alternative to ATAC-seq or DNAse-seq. When combined with cell-type specific DamID methods, expression of untethered Dam can be used to identify cell-type specific promoter or enhancer regions.RNA-DNA interactions
A DamID variant known as RNA-DamID can be used to detect interactions between RNA molecules and DNA. This method relies on the expression of a Dam-MCP fusion protein which is able to bind to an RNA that has been modified with MS2 stem-loops. Binding of the Dam-fusion protein to the RNA results in detectable methylation at sites of RNA binding to the genome.Long-range regulatory interactions
DNA sequences distal to a protein binding site may be brought into physical proximity through looping of chromosomes. For example, such interactions mediate enhancer and promoter function. These interactions can be detected through the action of Dam methylation. If Dam is targeted to a specific known DNA locus, distal sites brought into proximity due to the 3D configuration of the DNA will also be methylated and can be detected as in conventional DamID.Single cell DamID
DamID is usually performed on around 10,000 cells, (although it has been demonstrated with fewer). This means that the data obtained represents the average binding, or probability of a binding event across that cell population. A DamID protocol for single cells has also been developed and applied to human cells. Single cell approaches can highlight the heterogeneity of chromatin associations between cells.References
Further reading
* * * {{refendExternal links