DREADD
   HOME

TheInfoList



OR:

A receptor activated solely by a synthetic ligand (RASSL) or designer receptor exclusively activated by designer drugs (DREADD), is a class of artificially engineered protein receptors used in the field of
chemogenetics Chemogenetics is the process by which macromolecules can be engineered to interact with previously unrecognized small molecules. Chemogenetics as a term was originally coined to describe the observed effects of mutations on chalcone isomerase activ ...
which are selectively activated by certain
ligands In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ...
. They are used in biomedical research, in particular in neuroscience to manipulate the activity of
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
. Originally differentiated by the approach used to engineer them, RASSLs and DREADDs are often used interchangeably now to represent an engineered receptor-ligand system. These systems typically utilize G protein-coupled receptors (
GPCR G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related ...
) engineered to respond exclusively to synthetic ligands, like
clozapine N-oxide Clozapine ''N''-oxide (CNO) is a synthetic drug used mainly in biomedical research as a ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination comple ...
(CNO), and not to endogenous ligands. Several types of these receptors exists, derived from
muscarinic A muscarinic acetylcholine receptor agonist, also simply known as a muscarinic agonist or as a muscarinic agent, is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, lab ...
or κ-opioid receptors.


Types of RASSLs / DREADDs

One of the first DREADDs was based on the human M3 muscarinic receptor (hM3). Only two point mutations of hM3 were required to achieve a mutant receptor with nanomolar potency for CNO, insensitivity to
acetylcholine Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
and low constitutive activity and this DREADD receptor was named hM3Dq. M1 and M5 muscarinic receptors have been mutated to create DREADDs hM1Dq and hM5Dq respectively. The most commonly used inhibitory DREADD is hM4Di, derived from the M4 muscarinic receptor that couples with the Gi protein. Another Gi coupled human muscarinic receptor, M2, was also mutated to obtain the DREADD receptor hM2D. Another inhibitory Gi-DREADD is the kappa-opioid-receptor (KOR) DREADD (KORD) which is selectively activated by
salvinorin B Salvinorin A is the main active psychotropic molecule in ''Salvia divinorum''. Salvinorin A is considered an atypical dissociative hallucinogen. It is structurally distinct from other naturally occurring hallucinogens (such as DMT, psilocy ...
(SalB). Gs-coupled DREADDs have also been developed. These receptors are also known as GsD and are chimeric receptors containing intracellular regions of the turkey erythrocyte
β-adrenergic receptor The adrenergic receptors or adrenoceptors are a class of G protein-coupled receptors that are targets of many catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) produced by the body, but also many medications like bet ...
substituted into the rat M3 DREADD.


RASSL / DREADD ligands

A growing number of ligands that can be used to activate RASSLs / DREADDs are commercially available. CNO is the prototypical DREADD activator. CNO activates the excitatory Gq- coupled DREADDs: hM3Dq, hM1Dq and hM5Dq and also the inhibitory hM4Di and hM2Di Gi-coupled DREADDs. CNO also activates the Gs-coupled DREADD (GsD) and the β-arrestin preferring DREADD: rM3Darr (Rq(R165L). Recent findings suggest that systemically administered CNO does not readily cross the blood-brain-barrier ''in vivo'' and converts to
clozapine Clozapine, sold under the brand name Clozaril among others, is a psychiatric medication and was the first atypical antipsychotic to be discovered. It is used primarily to treat people with schizophrenia and schizoaffective disorder who have ...
which itself activates DREADDs. Clozapine is an
atypical antipsychotic The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs (antipsychotic drugs in general are also known as tranquilizers and neurol ...
which has been indicated to show high DREADD affinity and potency. Subthreshold injections of clozapine itself can be utilised to induce preferential DREADD-mediated behaviors. Therefore, when using CNO, care must be taken in experimental design and proper controls should be incorporated. DREADD agonist 21, also known as Compound 21, represents an alternative agonist for muscarinic-based DREADDs and an alternative to CNO. It has been reported that Compound 21 has excellent bioavailability, pharmacokinetic properties and brain penetrability and does not undergo reverse metabolism to clozapine. Another known agonist is perlapine, a hypnotic drug approved for treating insomnia in Japan. It acts as an activator of Gq-, Gi-, and Gs DREADDs that has structural similarity to CNO. A more recent agonist of hM3Dq and hM4Di is deschloroclozapine (DCZ). On the other hand, SalB B is a potent and selective activator of KORD. JHU37160 and JHU37152 have been marketed commercially as novel DREADD ligands, active ''in vivo'', with high potency and affinity for hM3Dq and hM4Di DREADDs. Dihydrochloride salts of DREADD ligands that are water-soluble (but with differing stabilities in solution) have also been commercially developed (see for aqueous stability).


Mechanism

RASSLs and DREADDs are families of designer
G-protein-coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large protein family, group of evoluti ...
s (GPCRs) built specifically to allow for precise spatiotemporal control of GPCR signaling ''
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
''. These engineered GPCRs are unresponsive to
endogenous ligand In biochemistry and pharmacology, a ligand is a substance that forms a complex with a biomolecule to serve a biological purpose. The etymology stems from Latin ''ligare'', which means 'to bind'. In protein-ligand binding, the ligand is usually a ...
s but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the interrogation of several GPCR signaling pathways, including those activated by Gs, Gi, Gq, Golf and β-arrestin. A major cause for success of RASSL resources has been open exchange of DNA constructs, and RASSL related resources. hM4Dq-DREADD signals through Gαq/11
G-protein G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their ...
by stimulating phosphlipase C which triggers release calcium from intracellular stores. Inhibitory effects of hM4Di-DREADD are a result of the CNO's stimulation which results in inhibition of
adenylate cyclase Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction: :A ...
and
cAMP Camp may refer to: Areas of confinement, imprisonment, or for execution * Concentration camp, an internment camp for political prisoners or politically targeted demographics, such as members of national or minority ethnic groups * Extermination ...
. This leads to activation of the G-protein inwardly rectifying potassium (GIRK) channels. This causes hyperpolarization of the targeted neuronal cell and thus attenuates subsequent activity. Gs-DREADDs acts through Gαs G-protein which increases cAMP concentration in cells.


Uses

This chemogenetic technique can be used for remote manipulation of cells, in particular excitable cells like neurons, both ''in vitro'' and ''in vivo'' with the administration of specific ligands. Similar techniques in this field include thermogenetics and
optogenetics Optogenetics is a biological technique to control the activity of neurons or other cell types with light. This is achieved by Gene expression, expression of Channelrhodopsin, light-sensitive ion channels, Halorhodopsin, pumps or Photoactivated ade ...
, the control of neurons with temperature or light, respectively. Viral expression of DREADD proteins, both in-vivo enhancers and inhibitors of neuronal function, have been used to bidirectionally control behaviors in mice (e.g odor discrimination). Due to their ability to modulate neuronal activity, DREADDs are used as a tool to evaluate both the neuronal pathways and behaviors associated with drug-cues and drug addiction.


History

Conklin and colleagues designed the first GPCR which could be activated only by a synthetic compound and has gradually been gaining momentum. The first international RASSL meeting was scheduled for April 6, 2006. A simple example of the use of a RASSL system in behavioral genetics was illustrated by Mueller et al. (2005) where they showed that expressing a RASSL receptor in sweet taste cells of the mouse tongue led to a strong preference for oral consumption of the synthetic ligand, whereas expressing the RASSL in bitter taste cells caused dramatic taste aversion for the same compound. The attenuating effects of the hM4Di-DREADD were originally explored in 2007, before being confirmed in 2014.


References


Further reading

* {{refend Signal transduction