
Cyclostratigraphy is a subdiscipline of
stratigraphy
Stratigraphy is a branch of geology concerned with the study of rock layers ( strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks.
Stratigraphy has three related subfields: lithost ...
that studies
astronomically forced
climate cycle
Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more ...
s within
sedimentary
Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
successions.
Orbital changes
Astronomical cycles (also known as
Milankovitch cycles) are variations of the Earth's orbit around the sun due to the gravitational interaction with other masses within the solar system.
Due to this cyclicity,
solar irradiation differs through time on different hemispheres and seasonality is affected. These insolation variations have influence on Earth's climate and on the deposition of sedimentary rocks.
The main orbital cycles are
precession
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In o ...
with main periods of 19 and 23 kyr,
obliquity with main periods of 41 kyr, and 1.2 Myr, and
eccentricity with main periods of around 100 kyr, 405 kyr, and 2.4 Myr.
Precession influences how much insolation each hemisphere receives. Obliquity controls the intensity of the seasons. Eccentricity influences how much insolation the Earth receives altogether. Varied insolation directly influences Earth's climate, and changes in precipitation and weathering are revealed in the sedimentary record. The 405 kyr eccentricity cycle helps correct chronologies in rocks or sediment cores when variable sedimentation makes them difficult to assign.
Indicators of these cycles in sediments include rock magnetism, geochemistry, biological composition, and physical features like color and facies changes.
[{{Cite journal, last=Strasser, first=André Hilgen, last2=Heckel, first2=Philip H., date=2007, title=Cyclostratigraphy concepts, definitions, and applications, url=http://www.schweizerbart.de/papers/nos/detail/42/63690/Cyclostratigraphy_concepts_definitions_and_applica?af=crossref, journal=Newsletters on Stratigraphy, language=en, volume=42, issue=2, pages=75–114, doi=10.1127/0078-0421/2006/0042-0075, issn=0078-0421]
Dating methods and applications
To determine the time range of a cyclostratigraphic study, rocks are dated using
radiometric dating
Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares t ...
and other stratigraphic methods. Once the time range is calibrated, the rocks are examined for Milankovitch signals. From there, ages can be assigned to the sediment layers based on the astronomical signals they contain.
Cyclostratigraphic studies of rock records can lead to accurate dating of events in the geological past, to increase understanding of cause and consequences of
Earth's (climate) history, and to more control on depositional mechanisms of sediments and the acting of sedimentary systems. Cyclostratigraphy also aids the study of planetary physics, because it provides information of astronomical cycles that extends beyond 50 Ma (astronomical models are not accurate beyond this).
Assigning time ranges to these astronomical cycles can be used to calibrate
40Ar/39Ar dating.
Limitations
Uncertainties also arise when using cyclostratigraphy. Using radioisotope dating to set parameters for time scales introduces a degree of uncertainty. There are also stratigraphic uncertainties, uncertainties due to climate forcing, and uncertainty about Earth's rotational effects on its precession. There is also uncertainty in records extending beyond 50 Ma because astronomical models are not accurate beyond 50 Ma due to chaos and uncertainties of initial conditions.
See also
*
Cyclic sediments
*
Milankovitch cycles
*
Stratigraphy
Stratigraphy is a branch of geology concerned with the study of rock layers ( strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks.
Stratigraphy has three related subfields: lithost ...
References
Stratigraphy
Paleoclimatology
Historical geology
Climate history