Use as a model
Advantages
The use of cultured neuronal networks as a model for their ''in vivo'' counterparts has been an indispensable resource for decades. It allows researchers to investigate neuronal activity in a much more controlled environment than would be possible in a live organism. Through this mechanism researchers have gleaned important information about the mechanisms behind learning and memory. A cultured neuronal network allows researchers to observe neuronal activity from several vantage points. Electrophysiological recording and stimulation can take place either across the network or locally via an MEA, and the network development can be visually observed using microscopy techniques. Moreover, chemical analysis of the neurons and their environment is more easily accomplished than in an ''in vivo'' setting.Disadvantages
Cultured neuronal networks are by definition disembodied cultures of neurons. Thus by being outside their natural environment, the neurons are influenced in ways that are not biologically normal. Foremost among these abnormalities is the fact that the neurons are usually harvested as neural stem cells from a fetus and are therefore disrupted at a critical stage in network development. When the neurons are suspended in solution and subsequently dispensed, the connections previously made are destroyed and new ones formed. Ultimately, the connectivity (and consequently the functionality) of the tissue is changed from what the original template suggested. Another disadvantage lies in the fact that the cultured neurons lack a body and are thus severed from sensory input as well as the ability to express behavior – a crucial characteristic in learning and memory experiments. It is believed that such sensory deprivation has adverse effects on the development of these cultures and may result in abnormal patterns of behavior throughout the network. Cultured networks on traditional MEAs are flat, single-layer sheets of cells with connectivity only two dimensions. Most ''in vivo'' neuronal systems, to the contrary, are large three-dimensional structures with much greater interconnectivity. This remains one of the most striking differences between the model and the reality, and this fact probably plays a large role in skewing some of the conclusions derived from experiments based on this model.Growing a neuronal network
Neurons used
Because of their wide availability, neuronal networks are typically cultured from dissociated rat neurons. Studies commonly employ rat cortical, hippocampal, and spinal neurons, although lab mouse neurons have also been used. Currently, relatively little research has been conducted on growing primate or other animal neuronal networks. Harvesting neural stem cells requires sacrificing the developing fetus, a process considered too costly to perform on many mammals that are valuable in other studies. One study, however, did make use of human neural stem cells grown into a network to control a robotic actuator. These cells were acquired from a fetus that spontaneously aborted after ten weeks in gestation.Long-term culture
One of the most formidable problems associated with cultured neuronal networks is their lack of longevity. Like most cell cultures, neuron cultures are highly susceptible to infection. They are also susceptible to hyperosmolality from medium evaporation. The long timelines associated with studying neuronal plasticity (usually on the scale of months) makes extending the lifespan of neurons ''in vitro'' paramount. One solution to this problem involves growing cells on an MEA inside a sealed chamber. This chamber serves as a non-humidified incubator that is enclosed by a fluorinated ethylene propylene (FEP) membrane that is permeable to select gases (i.e. gases necessary for metabolism) but impermeable to water and microbes. Other solutions entail an incubator with an impermeable membrane that has a specific mix of gases (air with 5% CO2 is typical) sealed inside.Microelectrode arrays (MEAs)
A microelectrode array (MEA), also commonly called a multielectrode array, is a patterned array of electrodes laid out in a transparent substrate used for communication with neurons in contact with it. The communication can be, and usually is, bidirectional; researchers can both record electrophysiological data from a live network and stimulate it. This device has been an essential biosensor for more than thirty years. It has been used not only in the study of neuronal plasticity and information processing but also inNetwork behavior
Spontaneous network activity
Spontaneous network bursts are a commonplace feature of neuronal networks both ''in vitro'' and ''in vivo''. ''In vitro'', this activity is particularly important in studies on learning and plasticity. Such experiments look intensely at the network-wide activity both before and after experiments in order to discern any changes that might implicate plasticity or even learning. However, confounding this experimental technique is the fact that normal neuronal development induces change in array-wide bursts that could easily skew data. ''In vivo'', however, it has been suggested that these network bursts may form the basis for memories. Depending on experimental perspective, network-wide bursts can be viewed either positively or negatively. In a pathological sense, spontaneous network activity can be attributed to the disembodiment of the neurons; one study saw a marked difference between array-wide firing frequency in cultures that received continuous input versus those that did not. To eliminate aberrant activity, researchers commonly use magnesium or synaptic blockers to quiet the network. However, this approach has great costs; quieted networks have little capacity for plasticity due to a diminished ability to create action potentials. A different and perhaps more effective approach is the use of low frequency stimulation that emulates sensory background activity. In a different light, network bursts can be thought of as benign and even good. Any given network demonstrates non-random, structured bursts. Some studies have suggested that these bursts represent information carriers, expression of memory, a means for the network to form appropriate connections, and learning when their pattern changes.Array-wide burst stability
Stegenga et al. set out to establish the stability of spontaneous network bursts as a function of time. They saw bursts throughout the lifetime of the cell cultures, beginning at 4–7 days ''in vitro'' (DIV) and continuing until culture death. They gathered network burst profiles (BPs) through a mathematical observation of array-wide spiking rate (AWSR), which is the summation of action potentials over all electrodes in an MEA. This analysis yielded the conclusion that, in their culture of Wistar rat neocortical cells, the AWSR has long rise and fall times during early development and sharper, more intense profiles after approximately 25 DIV. However, the use of BPs has an inherent shortcoming; BPs are an average of all network activity over time, and therefore only contain temporal information. In order to attain data about the spatial pattern of network activity they developed what they call phase profiles (PPs), which contain electrode specific data. Data was gathered using these PPs on timescales of milliseconds up through days. Their goal was to establish the stability of network burst profiles on the timescale of minutes to hours and to establish stability or developmental changes over the course of days. In summary, they were successful in demonstrating stability over minutes to hours, but the PPs gathered over the course of days displayed significant variability. These finding imply that studies of plasticity of neurons can only be conducted over the course of minutes or hours without bias in network activity introduced by normal development.Learning vs. plasticity
There is much controversy in the field of neuroscience surrounding whether or not a cultured neuronal network can learn. A crucial step in finding the answer to this problem lies in establishing the difference betweenSee also
* Artificial life * Artificial neural networks * Brain–computer interface * CoDi *References
{{reflist Computational neuroscience Neural circuits Neural engineering