Crystalline Silicon Solar Cell
   HOME

TheInfoList



OR:

Crystalline silicon or (c-Si) is the
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line forms of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, either
polycrystalline silicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produc ...
(poly-Si, consisting of small crystals), or
monocrystalline silicon Monocrystalline silicon, often referred to as single-crystal silicon or simply mono-Si, is a critical material widely used in modern electronics and photovoltaics. As the foundation for silicon-based discrete components and integrated circuits, ...
(mono-Si, a continuous crystal). Crystalline silicon is the dominant
semiconducting material A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping levels ...
used in
photovoltaic Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
technology for the production of
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
. These cells are assembled into
solar panel A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct ...
s as part of a
photovoltaic system A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to abso ...
to generate
solar power Solar power, also known as solar electricity, is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Solar panels use the photovoltaic effect to c ...
from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing
microchips An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
. This silicon contains much lower impurity levels than those required for solar cells. Production of semiconductor grade silicon involves a
chemical purification Purification in a chemical context is the physical separation of a chemical substance of interest from foreign or contaminating substances. Pure results of a successful purification process are termed isolate. The following list of chemical pu ...
to produce hyper-pure polysilicon, followed by a recrystallization process to grow monocrystalline silicon. The cylindrical
boules Boules (, ), or ''jeu de boules'', is a collective name for a wide range of games similar to bowls and bocce in which the objective is to throw or roll heavy balls as closely as possible to a small target ball, called the ''jack''. 'Boules' its ...
are then cut into
wafers A wafer is a crisp, often sweet, very thin, flat, light biscuit, often used to decorate ice cream, and also used as a garnish on some sweet dishes. They frequently have a waffle surface pattern but may also be patterned with insignia of the foo ...
for further processing. Solar cells made of crystalline silicon are often called ''conventional'', ''traditional'', or ''first generation'' solar cells, as they were developed in the 1950s and remained the most common type up to the present time. Because they are produced from 160 to 190 
μm The micrometre (Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a unit of length in the International System ...
thick
solar wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The ...
s—slices from bulks of
solar grade silicon Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a single crystal, continuous crystal). Crystalline silicon is the domi ...
—they are sometimes called ''wafer-based'' solar cells. Solar cells made from c-Si are
single-junction cell A unijunction transistor (UJT) is a three-lead electronic semiconductor device with only one junction. It acts exclusively as an electrically controlled switch. The UJT is not used as a linear amplifier. It is used in free-running oscillators, ...
s and are generally more efficient than their rival technologies, which are the second-generation
thin-film solar cell Thin-film solar cells are a type of solar cell made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nan ...
s, the most important being
CdTe Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with cadmi ...
, CIGS, and
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
(a-Si). Amorphous silicon is an
allotropic Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
variant of silicon, and
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
means "without shape" to describe its non-crystalline form.


Overview


Classification

The allotropic forms of silicon range from a single crystalline structure to a completely unordered amorphous structure with several intermediate varieties. In addition, each of these different forms can possess several names and even more abbreviations, and often cause confusion to non-experts, especially as some materials and their application as a PV technology are of minor significance, while other materials are of outstanding importance.


PV industry

In photovoltaic industry, materials are commonly grouped into the following two categories: * Crystalline silicon (c-Si), used in conventional
wafer A wafer is a crisp, often sweet, very thin, flat, light biscuit, often used to decorate ice cream, and also used as a garnish on some sweet dishes. They frequently have a waffle surface pattern but may also be patterned with insignia of the foo ...
-based solar cells. **
Monocrystalline silicon Monocrystalline silicon, often referred to as single-crystal silicon or simply mono-Si, is a critical material widely used in modern electronics and photovoltaics. As the foundation for silicon-based discrete components and integrated circuits, ...
(mono-Si) **
Polycrystalline silicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produc ...
(multi-Si) ** Ribbon silicon (ribbon-Si), has currently no market * Other materials, not classified as crystalline silicon, used in
thin-film A thin film is a layer of materials ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many a ...
and other solar-cell technologies. **
Amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
(a-Si) **
Nanocrystalline silicon Nanocrystalline silicon (nc-Si), sometimes also known as microcrystalline silicon (μc-Si), is a form of porous silicon. It is an allotropic form of silicon with paracrystalline structure—is similar to amorphous silicon (a-Si), in that it has ...
(nc-Si) ** Protocrystalline silicon (pc-Si) ** Other established non-silicon materials, such as
CdTe Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with cadmi ...
, CIGS ** Emerging photovoltaics **
Multi-junction solar cell Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p–n junction will produce electric current in response to different wavelengths of light. The use of mult ...
s (MJ) commonly used for
solar panels on spacecraft Spacecraft operating in the inner Solar System usually rely on the use of power electronics-managed photovoltaic solar panels to derive electricity from sunlight. Outside the orbit of Jupiter, solar radiation is too weak to produce sufficient po ...
for
space-based solar power Space-based solar power (SBSP or SSP) is the concept of collecting solar power in outer space with solar power satellites (SPS) and distributing it to Earth. Its advantages include a higher collection of energy due to the lack of reflection ...
. They are also used in
concentrator photovoltaics Concentrator photovoltaics (CPV) (also known as concentrating photovoltaics or concentration photovoltaics) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or cur ...
(CPV, HCPV), an emerging technology best suited for locations that receive much sunlight.


Generations

Alternatively, different types of solar cells and/or their semiconducting materials can be classified by generations: * First generation solar cells are made of crystalline silicon, also called, conventional, traditional, wafer-based solar cells and include monocrystalline (mono-Si) and polycrystalline (multi-Si) semiconducting materials. * Second generation solar cells or panels are based on thin-film technology and are of commercially significant importance. These include CdTe, CIGS and amorphous silicon. * Third generation solar cells are often labeled as ''emerging technologies'' with little or no market significance and include a large range of substances, mostly organic, often using organometallic compounds. Arguably, multi-junction photovoltaic cells can be classified to neither of these generations. A typical triple junction semiconductor is made of
InGaP Indium gallium phosphide (InGaP), also called gallium indium phosphide (GaInP), is a semiconductor composed of indium, gallium and phosphorus. It is used in high-power and high-frequency electronics because of its superior electron velocity with ...
/ (In)GaAs/ Ge.


Comparison of technical specifications


Market share

In 2013, conventional crystalline silicon technology dominated worldwide PV production, with multi-Si leading the market ahead of mono-Si, accounting for 54% and 36%, respectively. For the last ten years, worldwide market-share of thin-film technologies stagnated below 18% and currently stand at 9%. In the thin-film market, CdTe leads with an annual production of 2  GW p or 5%, followed by a-Si and CIGS, both around 2%. Alltime deployed PV
capacity Capacity or capacities may refer to: Mathematics, science, and engineering * Capacity of a container, closely related to the volume of the container * Capacity of a set, in Euclidean space, the total charge a set can hold while maintaining a giv ...
of 139 gigawatts ( cumulative as of 2013) splits up into 121 GW crystalline silicon (87%) and 18 GW thin-film (13%) technology.


Efficiency

The
conversion efficiency Energy conversion efficiency (''η'') is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radia ...
of PV devices describes the energy-ratio of the outgoing electrical power compared to the incoming radiated light. A single solar cells has generally a better, or higher efficiency than an entire solar module. Additionally, lab efficiency is always far superior to that of goods that are sold commercially. ; Lab cells : In 2013, record Lab cell efficiency was highest for crystalline silicon. However, multi-silicon is followed closely by cadmium telluride and copper indium gallium selenide solar cells. # 25.6% — mono-Si cell # 20.4% — multi-Si cell # 21.7% — CIGS cell # 21.5% — CdTe cell Both-sides-contacted silicon solar cells as of 2021: 26% and possibly above. ; Modules : The average commercial crystalline silicon module increased its efficiency from about 12% to 16% over the last ten years. In the same period CdTe-modules improved their efficiency from 9 to 16%. The modules performing best under lab conditions in 2014 were made of monocrystalline silicon. They were 7% above the efficiency of commercially produced modules (23% over 16%) which indicated that the conventional silicon technology still had potential to improve and therefore maintain its leading position.


Energy costs of manufacture

Crystalline silicon has a high cost in energy because silicon is produced by the reduction of high-grade
quartz sand Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical fo ...
in an electric furnace. The electricity generated for this process may produce
greenhouse gas emissions Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide (), from burning fossil fuels such as coal, petroleum, oil, and natural gas, is the main cause of climate chan ...
. This coke-fired
smelting Smelting is a process of applying heat and a chemical reducing agent to an ore to extract a desired base metal product. It is a form of extractive metallurgy that is used to obtain many metals such as iron-making, iron, copper extraction, copper ...
process occurs at high temperatures of more than 1,000 °C and is very energy intensive, using about 11 kilowatt-hours (kW⋅h) per kilogram of silicon. The energy requirements of this process per unit of silicon metal produced may be relatively inelastic. But major energy cost reductions per (photovoltaic) product have been made as silicon cells have become more efficient at converting sunlight, larger silicon metal ingots are cut with less waste into thinner wafers, silicon waste from manufacture is recycled, and material costs have reduced.


Toxicity

With the exception of
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
, most commercially established PV technologies use
toxic heavy metal A toxic heavy metal is a common but misleading term for a metal-like element noted for its potential toxicity. Not all heavy metals are toxic and some toxic metals are not heavy. Elements often discussed as toxic include cadmium, mercury and ...
s. CIGS often uses a
CdS CDS, CDs, Cds, etc. may refer to: Finance * Canadian Depository for Securities, Canadian post-trade financial services company * Certificate of deposit (CDs) * Counterfeit Deterrence System, developed by the Central Bank Counterfeit Deterrence ...
buffer layer, and the semiconductor material of
CdTe Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with cadmi ...
-technology itself contains the toxic
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
(Cd). In the case of crystalline silicon modules, the
solder Solder (; North American English, NA: ) is a fusible alloy, fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces aft ...
material that joins the copper strings of the cells, it contains about 36% of
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
(Pb). Moreover, the paste used for screen printing front and back contacts contains traces of Pb and sometimes Cd as well. It is estimated that about 1,000 metric tonnes of Pb have been used for 100 gigawatts of c-Si solar modules. However, there is no fundamental need for lead in the solder alloy.


Properties

Crystalline silicon has become so pervasive in the semiconductor and solar spaces primarily for its excellent optical and electronic properties, specifically its moderate bandgap and high charge carrier mobility. But it is the mechanical properties of crystalline silicon wafers that have allowed this material to become widely scaled and commercialized, and mechanical and electronic properties go hand in hand. The ease of manufacturing crystalline silicon wafers is also largely owed to their mechanical properties. The mechanical properties of pure, undoped monocrystalline silicon are included below. Due to its diamond cubic crystal structure, some of these properties are anisotropic depending on the crystallographic orientation along which they are measured, or depending upon the crystallographic plane along which the wafers are cut. These mechanical properties are relevant both for the semiconductor industry, where silicon substrates are used as circuit supports, and for the PV industry, where silicon solar panels are often exposed to extreme weather conditions. In both cases, however, crystalline silicon is typically doped with certain other elements (Group 13 elements for more positive charge carriers, Group 15 elements for more negative charge carriers) to increase conductivity and shift the bandgap, which simultaneously modifies the mechanical properties. It has been shown that increasing dopant concentration can decrease the shear modulus, increase the bulk modulus, decrease the stiffness (elastic modulus), and shift the material from the brittle to the ductile regime. This results in overall increased toughness, which is useful for manufacturing, and increased elasticity and ductility. In the PV industry, recent demand has risen for flexible solar cells that can be mounted on a variety of uneven or mobile surfaces and integrated into existing structures. While it is a relatively mature technology, crystalline silicon solar has maintained its lead as the most widespread and most efficient solar technology on the market, so researchers have long sought to adapt the technology to make it flexible and lightweight. This goal has remained elusive because it is a major challenge due to the inherent brittleness of crystalline silicon. In a new landmark study, researchers from China developed a method to create flexible crystalline silicon wafers. When crystalline silicon wafers are cut, the surface of these wafers are typically textured/micropatterned to increase the surface area and allow for better light absorption. This technique creates lots of sharp valleys at which cracks easily form when the wafer is bent, ultimately leading to brittle fractures. As a solution to this problem, the researchers blunted the tips at the edges of the wafer, eliminating the source of fractures and ultimately creating crystalline silicon solar cells that maintain their power conversion efficiency throughout bending cycles.


Cell technologies


PERC solar cell

Passivated emitter rear contact (PERC) solar cells consist of the addition of an extra layer to the rear-side of a solar cell. This dielectric passive layer acts to reflect unabsorbed light back to the solar cell for a second absorption attempt increasing the solar cell efficiency. A PERC is created through an additional film deposition and etching process. Etching can be done either by chemical or laser processing. About 80% of solar panels worldwide use the PERC design. Martin Green, Andrew Blakers, Jianhua Zhao and Aihua Wang won the
Queen Elizabeth Prize for Engineering Queen most commonly refers to: * Queen regnant, a female monarch of a kingdom * Queen consort, the wife of a reigning king * Queen (band), a British rock band Queen or QUEEN may also refer to: Monarchy * Queen dowager, the widow of a king * ...
in 2023 for development of the PERC solar cell.


HIT solar cell

A HIT solar cell is composed of a mono thin crystalline silicon wafer surrounded by ultra-thin
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
layers. The acronym HIT stands for "
heterojunction A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in m ...
with intrinsic thin layer". HIT cells are produced by the Japanese multinational electronics corporation
Panasonic is a Japanese multinational electronics manufacturer, headquartered in Kadoma, Osaka, Kadoma, Japan. It was founded in 1918 as in Fukushima-ku, Osaka, Fukushima by Kōnosuke Matsushita. The company was incorporated in 1935 and renamed and c ...
(see also '). Panasonic and several other groups have reported several advantages of the HIT design over its traditional c-Si counterpart: # An intrinsic a-Si layer can act as an effective surface passivation layer for c-Si wafer. # The p+/n+ doped a-Si functions as an effective emitter/BSF for the cell. # The a-Si layers are deposited at much lower temperature, compared to the processing temperatures for traditional diffused c-Si technology. # The HIT cell has a lower temperature coefficient compared to c-Si cell technology. Owing to all these advantages, this new hetero-junction solar cell is a considered to be a promising low cost alternative to traditional c-Si based solar cells.


Fabrication of HIT cells

The details of the fabrication sequence vary from group to group. Typically in good quality, CZ/FZ grown c-Si wafer (with ~1 ms lifetimes) are used as the absorber layer of HIT cells. Using alkaline etchants, such as, NaOH or (CH3)4NOH the (100) surface of the wafer is textured to form the pyramids of 5–10 μm height. Next, the wafer is cleaned using peroxide and HF solutions. This is followed by deposition of intrinsic a-Si passivation layer, typically through PECVD or Hot-wire CVD. The silane (SiH4) gas diluted with H2 is used as a precursor. The deposition temperature and pressure is maintained at 200 °C and 0.1−1 Torr. Precise control over this step is essential to avoid the formation of defective epitaxial Si. Cycles of deposition and annealing and H2 plasma treatment are shown to have provided excellent surface passivation. Diborane or Trimethylboron gas mixed with SiH4 is used to deposit p-type a-Si layer, while, Phosphine gas mixed with SiH4 is used to deposit n-type a-Si layer. Direct deposition of doped a-Si layers on c-Si wafer is shown to have very poor passivation properties. This is most likely due to dopant induced defect generation in a-Si layers. Sputtered Indium Tin Oxide (ITO) is commonly used as a transparent conductive oxide (TCO) layer on top of the front and back a-Si layer in bi-facial design, as a-Si has high lateral resistance. It is generally deposited on the back side as well fully metallized cell to avoid diffusion of back metal and also for impedance matching for the reflected light. The silver/aluminum grid of 50-100μm thick is deposited through stencil printing for the front contact and back contact for bi-facial design. The detailed description of the fabrication process can be found in.


Opto-electrical modeling and characterization of HIT cells

The literature discusses several studies to interpret carrier transport bottlenecks in these cells. Traditional light and dark I–V are extensively studied and are observed to have several non-trivial features, which cannot be explained using the traditional solar cell diode theory. This is because of the presence of hetero-junction between the intrinsic a-Si layer and c-Si wafer which introduces additional complexities to current flow. In addition, there has been significant efforts to characterize this solar cell using C-V, impedance spectroscopy, surface photo-voltage, suns-Voc to produce complementary information. Further, a number of design improvements, such as, the use of new emitters, bifacial configuration, interdigitated back contact (IBC) configuration bifacial-tandem configuration are actively being pursued.


Mono-silicon

Monocrystalline silicon (mono c-Si) is a form in which the crystal structure is homogeneous throughout the material; the orientation, lattice parameter, and electronic properties are constant throughout the material.. Dopant atoms such as phosphorus and boron are often incorporated into the film to make the silicon n-type or p-type respectively. Monocrystalline silicon is fabricated in the form of silicon wafers, usually by the Czochralski Growth method, and can be quite expensive depending on the radial size of the desired single crystal wafer (around $200 for a 300 mm Si wafer). This monocrystalline material, while useful, is one of the chief expenses associated with producing photovoltaics where approximately 40% of the final price of the product is attributable to the cost of the starting silicon wafer used in cell fabrication.


Polycrystalline silicon

Polycrystalline silicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produc ...
is composed of many smaller silicon grains of varied crystallographic orientation, typically > 1 mm in size. This material can be synthesized easily by allowing liquid silicon to cool using a seed crystal of the desired crystal structure. Additionally, other methods for forming smaller-grained polycrystalline silicon (poly-Si) exist such as high temperature chemical vapor deposition (CVD).


Not classified as Crystalline silicon

These allotropic forms of silicon are not classified as crystalline silicon. They belong to the group of
thin-film solar cells Thin-film solar cells are a type of solar cell made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers ( nm ...
.


Amorphous silicon

Amorphous silicon (a-Si) has no long-range periodic order. The application of amorphous silicon to photovoltaics as a standalone material is somewhat limited by its inferior electronic properties.. When paired with microcrystalline silicon in tandem and triple-junction solar cells, however, higher efficiency can be attained than with single-junction solar cells. This tandem assembly of solar cells allows one to obtain a thin-film material with a bandgap of around 1.12 eV (the same as single-crystal silicon) compared to the bandgap of amorphous silicon of bandgap. Tandem solar cells are then attractive since they can be fabricated with a bandgap similar to single-crystal silicon but with the ease of amorphous silicon.


Nanocrystalline silicon

Nanocrystalline silicon Nanocrystalline silicon (nc-Si), sometimes also known as microcrystalline silicon (μc-Si), is a form of porous silicon. It is an allotropic form of silicon with paracrystalline structure—is similar to amorphous silicon (a-Si), in that it has ...
(nc-Si), sometimes also known as ''microcrystalline silicon'' (μc-Si), is a form of
porous silicon Porous silicon (abbreviated as "PS" or "pSi") is a form of the chemical element silicon that has introduced nanopores in its microstructure, rendering a large surface to volume ratio in the order of 500 m2/cm3. History Porous silicon was disco ...
. It is an
allotropic Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
form of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
with
paracrystalline In materials science, paracrystalline materials are defined as having short- and medium-range ordering in their lattice (similar to the liquid crystal phases) but lacking crystal-like long-range ordering at least in one direction. Origin and d ...
structure—is similar to
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
(a-Si), in that it has an
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
phase. Where they differ, however, is that nc-Si has small grains of crystalline silicon within the amorphous phase. This is in contrast to
polycrystalline silicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produc ...
(poly-Si) which consists solely of crystalline silicon grains, separated by grain boundaries. The difference comes solely from the grain size of the crystalline grains. Most materials with grains in the micrometre range are actually fine-grained polysilicon, so nanocrystalline silicon is a better term. The term 'nanocrystalline silicon' refers to a range of materials around the transition region from amorphous to microcrystalline phase in the silicon thin film.


Protocrystalline silicon

Protocrystalline silicon has a higher efficiency than amorphous silicon (a-Si) and it has also been shown to improve stability, but not eliminate it. A Protocrystalline phase is a distinct
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
occurring during
crystal growth Crystal growth is a major stage of a crystallization, crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. The growth typically follows an ini ...
which evolves into a
microcrystalline A microcrystalline material is a crystallized substance or rock that contains small crystals visible only through microscopic examination. There is little agreement on the range of crystal sizes that should be regarded as microcrystalline, but ...
form. Protocrystalline Si also has a relatively low absorption near the band gap owing to its more ordered crystalline structure. Thus, protocrystalline and amorphous silicon can be combined in a tandem solar cell where the top layer of thin protocrystalline silicon absorbs short-wavelength light whereas the longer wavelengths are absorbed by the underlying a-Si substrate.


Transformation of amorphous into crystalline silicon

Amorphous silicon can be transformed to crystalline silicon using well-understood and widely implemented high-temperature annealing processes. The typical method used in industry requires high-temperature compatible materials, such as special high temperature glass that is expensive to produce. However, there are many applications for which this is an inherently unattractive production method.


Low temperature induced crystallization

Flexible solar cells have been a topic of interest for less conspicuous-integrated power generation than solar power farms. These modules may be placed in areas where traditional cells would not be feasible, such as wrapped around a telephone pole or cell phone tower. In this application, a photovoltaic material may be applied to a flexible substrate, often a polymer. Such substrates cannot survive the high temperatures experienced during traditional annealing. Instead, novel methods of crystallizing the silicon without disturbing the underlying substrate have been studied extensively. Aluminum-induced crystallization (AIC) and local laser crystallization are common in the literature, however not extensively used in industry. In both of these methods, amorphous silicon is grown using traditional techniques such as plasma-enhanced chemical vapor deposition (PECVD). The crystallization methods diverge during post-deposition processing. In aluminum-induced crystallization, a thin layer of aluminum (50 nm or less) is deposited by physical vapor deposition onto the surface of the amorphous silicon. This stack of material is then annealed at a relatively low temperature between 140 °C and 200 °C in a vacuum. The aluminum that diffuses into the amorphous silicon is believed to weaken the hydrogen bonds present, allowing crystal nucleation and growth.. Experiments have shown that polycrystalline silicon with grains on the order of 0.2–0.3 μm can be produced at temperatures as low as 150 °C. The volume fraction of the film that is crystallized is dependent on the length of the annealing process. Aluminum-induced crystallization produces polycrystalline silicon with suitable crystallographic and electronic properties that make it a candidate for producing polycrystalline thin films for photovoltaics. AIC can be used to generate crystalline silicon nanowires and other nano-scale structures. Another method of achieving the same result is the use of a laser to heat the silicon locally without heating the underlying substrate beyond some upper-temperature limit. An excimer laser or, alternatively, green lasers such as a frequency-doubled Nd:YAG laser is used to heat the amorphous silicon, supplying the energy necessary to nucleate grain growth. The laser fluence must be carefully controlled in order to induce crystallization without causing widespread melting. Crystallization of the film occurs as a very small portion of the silicon film is melted and allowed to cool. Ideally, the laser should melt the silicon film through its entire thickness, but not damage the substrate. Toward this end, a layer of silicon dioxide is sometimes added to act as a thermal barrier. This allows the use of substrates that cannot be exposed to the high temperatures of standard annealing, polymers for instance. Polymer-backed solar cells are of interest for seamlessly integrated power production schemes that involve placing photovoltaics on everyday surfaces. A third method for crystallizing amorphous silicon is the use of a thermal plasma jet. This strategy is an attempt to alleviate some of the problems associated with laser processing – namely the small region of crystallization and the high cost of the process on a production scale. The plasma torch is a simple piece of equipment that is used to anneal the amorphous silicon thermally. Compared to the laser method, this technique is simpler and more cost-effective.. Plasma torch annealing is attractive because the process parameters and equipment dimensions can be changed easily to yield varying levels of performance. A high level of crystallization (~ 90%) can be obtained with this method. Disadvantages include difficulty achieving uniformity in the crystallization of the film. While this method is applied frequently to silicon on a glass substrate, processing temperatures may be too high for polymers.


See also

*
List of types of solar cells {{for, description and history, Solar cell A solar cell (also called photovoltaic cell or photoelectric cell) is a solid state electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a p ...


References

{{Photovoltaics Silicon, crystalline Silicon solar cells Allotropes of silicon