Cryogenic particle detectors operate at very low temperature, typically only a few degrees above
absolute zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrati ...
. These
sensors
A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon.
In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
interact with an energetic
elementary particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, antiq ...
(such as a
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
) and deliver a signal that can be related to the type of particle and the nature of the interaction. While many types of particle detectors might be operated with improved performance at
cryogenic
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
temperatures, this term generally refers to types that take advantage of special effects or properties occurring only at low temperature.
Introduction
The most commonly cited reason for operating any sensor at low temperature is the reduction in
thermal noise
A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
, which is proportional to the square root of the
absolute temperature
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.
Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic ...
. However, at very low temperature, certain material properties become very sensitive to energy deposited by particles in their passage through the sensor, and the gain from these changes may be even more than that from reduction in thermal noise. Two such commonly used properties are
heat capacity
Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K).
Heat capacity ...
and
electrical resistivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
, particularly
superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlik ...
; other designs are based on superconducting
tunnel junction
In electronics/spintronics, a tunnel junction is a barrier, such as a thin insulating layer or electric potential, between two electrically conducting materials. Electrons (or quasiparticles) pass through the barrier by the process of quantum tunn ...
s,
quasiparticle
In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.
For exa ...
trapping,
rotons in
superfluid
Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
s, magnetic
bolometer
A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley.
Principle of operation
A bolometer ...
s, and other principles.
Originally, astronomy pushed the development of cryogenic detectors for optical and infrared radiation. Later, particle physics and cosmology motivated cryogenic detector development for sensing known and predicted particles such as
neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s,
axions, and
weakly interacting massive particles
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.
There exists no formal definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gra ...
(WIMPs).
Types of cryogenic particle detectors
Calorimetric particle detection
A
calorimeter
A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimete ...
is a device that measures the amount of
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
deposited in a sample of material. A calorimeter differs from a
bolometer
A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley.
Principle of operation
A bolometer ...
in that a calorimeter measures energy, while a bolometer measures
power.
Below the
Debye temperature
In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 for estimating the phonon contribution to the specific heat (Heat capacity) in a solid. It treats the vibrations of the atomic lattice (hea ...
of a crystalline
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the m ...
material (such as
silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
), the heat capacity decreases inversely as the cube of the absolute temperature. It becomes very small, so that the sample's increase in temperature for a given heat input may be relatively large. This makes it practical to make a calorimeter that has a very large temperature excursion for a small amount of heat input, such as that deposited by a passing particle. The temperature rise can be measured with a standard type of
thermistor
A thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of ''thermal'' and ''resistor''.
Thermistors are divided based on their conduction ...
, as in a classical calorimeter. In general, small sample size and very sensitive thermistors are required to make a sensitive particle detector by this method.
In principle, several types of
resistance thermometers
Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a heat-resistant ceramic or glass core but other constructio ...
can be used. The limit of sensitivity to energy deposition is determined by the magnitude of resistance fluctuations, which are in turn determined by
thermal fluctuations
In statistical mechanics, thermal fluctuations are random deviations of a system from its average state, that occur in a system at equilibrium.In statistical mechanics they are often simply referred to as fluctuations. All thermal fluctuations b ...
. Since all
resistor
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias activ ...
s exhibit voltage fluctuations that are proportional to their temperature, an effect known as
Johnson noise
Johnson is a surname of Anglo-Norman origin meaning "Son of John". It is the second most common in the United States and 154th most common in the world. As a common family name in Scotland, Johnson is occasionally a variation of ''Johnston'', a ...
, a reduction of temperature is often the only way to achieve the required sensitivity.
Superconducting transition-edge sensors
A very sensitive calorimetric sensor known as a
transition-edge sensor
A transition-edge sensor (TES) is a type of cryogenic energy sensor or cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.
History
The first demonstrations of the super ...
(TES) takes advantage of
superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlik ...
. Most pure superconductors have a very sharp transition from normal resistivity to superconductivity at some low temperature. By operating on the superconducting phase transition, a very small change in temperature resulting from interaction with a particle results in a significant change in resistance.
Superconducting tunnel junctions
The
superconducting tunnel junction (STJ) consists of two pieces of
superconducting
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
material separated by a very thin (~
nanometer
330px, Different lengths as in respect to the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re, ...
)
insulating layer. It is also known as a
superconductor-insulator-superconductor tunnel junction
The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Cu ...
(SIS) and is a type of a
Josephson junction.
Cooper pairs can
tunnel
A tunnel is an underground passageway, dug through surrounding soil, earth or rock, and enclosed except for the entrance and exit, commonly at each end. A pipeline is not a tunnel, though some recent tunnels have used immersed tube cons ...
across the insulating barrier, a phenomenon known as the
Josephson effect
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum me ...
.
Quasiparticles can also tunnel across the barrier, although the quasiparticle current is suppressed for voltages less than twice the superconducting energy gap. A photon absorbed on one side of a STJ breaks Cooper pairs and creates quasiparticles. In the presence of an applied voltage across the junction, the quasiparticles tunnel across the junction, and the resulting tunneling current is proportional to the photon energy. The STJ can also be used as a
heterodyne detector
A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called ''heterodyning'', which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is us ...
by exploiting the change in the nonlinear
current–voltage characteristic
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or ...
that results from photon-assisted tunneling. STJs are the most sensitive heterodyne detectors available for the 100 GHz – 1
THz frequency range and are employed for
astronomical
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, ...
observation at these frequencies.
Kinetic inductance detectors
The
kinetic inductance detector (KID) is based on measuring the change in
kinetic inductance caused by the absorption of photons in a thin strip of
superconducting
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
material. The change in inductance is typically measured as the change in the resonant frequency of a
microwave
Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequency, frequencies between 300 MHz and 300 GHz respectively. Different sources define different fre ...
resonator
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a reson ...
, and hence these detectors are also known as microwave kinetic inductance detectors (MKIDs).
Superconducting granules
The superconducting transition alone can be used to directly measure the heating caused by a passing particle. A type-I superconducting grain in a magnetic field exhibits perfect
diamagnetism
Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attrac ...
and excludes the field completely from its interior. If it is held slightly below the transition temperature, the superconductivity vanishes on heating by particle radiation, and the field suddenly penetrates the interior. This field change can be detected by a surrounding coil. The change is reversible when the grain cools again. In practice the grains must be very small and carefully made, and carefully coupled to the coil.
Magnetic calorimeters
Paramagnetic
Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
rare-earth
The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides ( yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous sil ...
ions are being used as particle sensors by sensing the spin flips of the paramagnetic atoms induced by heat absorbed in a low-heat-capacity material. The ions are used as a magnetic thermometer.
Other methods
Phonon particle detection
Calorimeters assume the sample is in
thermal equilibrium
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
or nearly so. In crystalline materials at very low temperature this is not necessarily the case. A good deal more information can be found by measuring the elementary excitations of the crystal lattice, or
phonon
In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical ...
s, caused by the interacting particle. This can be done by several methods including superconducting
transition edge sensors
A transition-edge sensor (TES) is a type of cryogenic energy sensor or cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.
History
The first demonstrations of the super ...
.
Superconducting nanowire single-photon detectors
The
superconducting nanowire single-photon detector (SNSPD) is based on a superconducting wire cooled well below the superconducting transition temperature and biased with a dc
current that is close to but less than the superconducting critical current. The SNSPD is typically made from ≈ 5 nm thick
niobium nitride films which are patterned as narrow nanowires (with a typical width of 100 nm). Absorption of a photon breaks
Cooper pairs and reduces the critical current below the bias current. A small non-superconducting section across the width of the nanowire is formed. This resistive non-superconducting section then leads to a detectable voltage pulse of a duration of about 1 nanosecond. The main advantages of this type of photon detector are its high speed (a maximal count rate of 2 GHz makes them the fastest available) and its low dark count rate. The main disadvantage is the lack of intrinsic energy resolution.
Roton detectors
In superfluid
4He the elementary collective excitations are
phonon
In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical ...
s and
rotons. A particle striking an electron or nucleus in this superfluid can produce rotons, which may be detected bolometrically or by the evaporation of helium atoms when they reach a free surface.
4He is intrinsically very pure so the rotons travel ballistically and are stable, so that large volumes of fluid can be used.
Quasiparticles in superfluid 3He
In the B phase, below 0.001 K, superfluid
3He acts similarly to a superconductor. Pairs of atoms are bound as
quasiparticle
In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.
For exa ...
s similar to Cooper pairs with a very small energy gap of the order of 100 nano
electronvolt
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
s. This allows building a detector
analogous to a superconducting tunnel detector. The advantage is that many (~10
9) pairs
could be produced by a single interaction, but the difficulties are that it is difficult
to measure the excess of normal
3He atoms produced and to prepare and maintain much
superfluid at such low temperature.
References
*
*
#
#
#
#
#
See also
*
Bolometer
A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley.
Principle of operation
A bolometer ...
*
Detector
A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon.
In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
*
Domain wall (magnetism)
*
Flux pinning
*
Ginzburg–Landau theory
In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenol ...
*
Husimi Q representation
*
Josephson effect
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum me ...
*
Meissner effect
*
Microbolometer
*
Superconductors
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
*
Cryogenic Dark Matter Search
{{div col end
Particle detectors
Sensors
Superconducting detectors
Superfluidity