HOME

TheInfoList



OR:

The Crookes radiometer (also known as a light mill) consists of an airtight glass bulb containing a partial vacuum, with a set of vanes which are mounted on a spindle inside. The vanes rotate when exposed to light, with faster rotation for more intense light, providing a quantitative measurement of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
intensity. The reason for the rotation was a cause of much
scientific debate Sustained scientific debate, sometimes scientific controversy or persistent disagreement, is any a substantial disagreement among scientists. A scientific controversy may involve issues such as the interpretation of data, which ideas are most s ...
in the ten years following the invention of the device, but in 1879 the currently accepted explanation for the rotation was published. Today the device is mainly used in physics education as a demonstration of a
heat engine A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, pa ...
run by light energy. It was invented in 1873 by the chemist
Sir William Crookes Sir William Crookes (; 17 June 1832 – 4 April 1919) was an English chemist and physicist who attended the Royal College of Chemistry, now part of Imperial College London, and worked on spectroscopy. He was a pioneer of vacuum tubes, inventing ...
as the by-product of some chemical research. In the course of very accurate quantitative chemical work, he was weighing samples in a partially evacuated chamber to reduce the effect of air currents, and noticed the weighings were disturbed when sunlight shone on the balance. Investigating this effect, he created the device named after him. It is still manufactured and sold as an educational aid or for curiosity.


General description

The
radiometer A radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the micro ...
is made from a glass bulb from which much of the air has been removed to form a partial
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
. Inside the bulb, on a low-
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
spindle, is a rotor with several (usually four) vertical lightweight vanes spaced equally around the axis. The vanes are polished or white on one side and black on the other. When exposed to
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
, artificial light, or
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation (even the heat of a hand nearby can be enough), the vanes turn with no apparent motive power, the dark sides retreating from the radiation source and the light sides advancing. Cooling the outside of the radiometer rapidly causes rotation in the opposite direction.


Effect observations

The effect begins to be observed at partial vacuum pressures of several hundred pascals (or several
torr The torr (symbol: Torr) is a Pressure#Units, unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (unit), atmosphere (101325 Pa). Thus one torr is exactly (≈ ). Historically, one torr was intended to be ...
s), reaches a peak at around and has disappeared by the time the vacuum reaches ( see explanations note 1). At these very high vacuums the effect of photon
radiation pressure Radiation pressure (also known as light pressure) is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of ...
on the vanes can be observed in very sensitive apparatus (see
Nichols radiometer A Nichols radiometer was the apparatus used by Ernest Fox Nichols and Gordon Ferrie Hull in 1901 for the measurement of radiation pressure. It consisted of a pair of small silvered glass mirrors suspended in the manner of a torsion balance b ...
), but this is insufficient to cause rotation.


Origin of the name

The
prefix A prefix is an affix which is placed before the stem of a word. Particularly in the study of languages, a prefix is also called a preformative, because it alters the form of the word to which it is affixed. Prefixes, like other affixes, can b ...
" radio-" in the title originates from the combining form of Latin ''radius'', a ray: here it refers to
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
. A Crookes radiometer, consistent with the
suffix In linguistics, a suffix is an affix which is placed after the stem of a word. Common examples are case endings, which indicate the grammatical case of nouns and adjectives, and verb endings, which form the conjugation of verbs. Suffixes can ca ...
" -meter" in its title, can provide a quantitative measurement of electromagnetic radiation intensity. This can be done, for example, by visual means (e.g., a spinning slotted disk, which functions as a simple
stroboscope A stroboscope, also known as a strobe, is an instrument used to make a cyclically moving object appear to be slow-moving, or stationary. It consists of either a rotating disk with slots or holes or a lamp such as a flashtube which produces br ...
) without interfering with the measurement itself.


Thermodynamic explanation


Movement with absorption

When a
radiant energy In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic radiation, electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calcul ...
source is directed at a Crookes radiometer, the radiometer becomes a heat engine. The operation of a heat engine is based on a difference in
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
that is converted to a mechanical output. In this case, the black side of the vane becomes hotter than the other side, as radiant energy from a light source warms the black side by
absorption Absorption may refer to: Chemistry and biology *Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which su ...
faster than the silver or white side. The internal air
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s are heated up when they touch the black side of the vane. The warmer side of the vane is subjected to a force which moves it forward. The internal temperature rises as the black vanes impart heat to the air molecules, but the molecules are cooled again when they touch the bulb's glass surface, which is at ambient temperature. This heat loss through the glass keeps the internal bulb temperature steady with the result that the two sides of the vanes develop a temperature difference. The white or silver side of the vanes are slightly warmer than the internal air temperature but cooler than the black side, as some heat conducts through the vane from the black side. The two sides of each vane must be thermally insulated to some degree so that the polished or white side does not immediately reach the temperature of the black side. If the vanes are made of metal, then the black or white paint can be the insulation. The glass stays much closer to ambient temperature than the temperature reached by the black side of the vanes. The external air helps conduct heat away from the glass. The air pressure inside the bulb needs to strike a balance between too low and too high. A strong vacuum inside the bulb does not permit motion, because there are not enough air molecules to cause the air currents that propel the vanes and transfer heat to the outside before both sides of each vane reach thermal equilibrium by heat conduction through the vane material. High inside pressure inhibits motion because the temperature differences are not enough to push the vanes through the higher concentration of air: there is too much air resistance for "eddy currents" to occur, and any slight air movement caused by the temperature difference is damped by the higher pressure before the currents can "wrap around" to the other side.


Movement with radiation

When the radiometer is heated in the absence of a light source, it turns in the forward direction (i.e. black sides trailing). If a person's hands are placed around the glass without touching it, the vanes will turn slowly or not at all, but if the glass is touched to warm it quickly, they will turn more noticeably. Directly heated glass gives off enough infrared radiation to turn the vanes, but glass blocks much of the far-infrared radiation from a source of warmth not in contact with it. However, near-infrared and visible light more easily penetrate the glass. If the glass is cooled quickly in the absence of a strong light source by putting ice on the glass or placing it in the freezer with the door almost closed, it turns backwards (i.e. the silver sides trail). This demonstrates radiation from the black sides of the vanes rather than absorption. The wheel turns backwards because the net exchange of heat between the black sides and the environment initially cools the black sides faster than the white sides. Upon reaching equilibrium, typically after a minute or two, reverse rotation ceases. This contrasts with sunlight, with which forward rotation can be maintained all day.


Explanations for the force on the vanes

Over the years, there have been many attempts to explain how a Crookes radiometer works:


Incorrect theories

Crookes incorrectly suggested that the force was due to the pressure of light. This theory was originally supported by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
, who had predicted this force. This explanation is still often seen in leaflets packaged with the device. The first experiment to test this theory was done by
Arthur Schuster Sir Franz Arthur Friedrich Schuster (12 September 1851 – 14 October 1934) was a German-born British physicist known for his work in spectroscopy, electrochemistry, optics, X-radiography and the application of harmonic analysis to physics. S ...
in 1876, who observed that there was a force on the glass bulb of the Crookes radiometer that was in the opposite direction to the rotation of the vanes. This showed that the force turning the vanes was generated inside the radiometer. If light pressure were the cause of the rotation, then the better the vacuum in the bulb, the less air resistance to movement, and the faster the vanes should spin. In 1901, with a better vacuum pump,
Pyotr Lebedev Pyotr Nikolaevich Lebedev (; 24 February 1866 – 1 March 1912) was a Russian physicist. His name was also transliterated as Peter Lebedew and Peter Lebedev. Lebedev was the creator of the first scientific school in Russia. Career Lebedev made hi ...
showed that in fact, the radiometer only works when there is low-pressure gas in the bulb, and the vanes stay motionless in a hard vacuum. Finally, if light pressure were the motive force, the radiometer would spin in the opposite direction, as the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s on the shiny side being reflected would deposit more momentum than on the black side, where the photons are absorbed. This results from
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
– the momentum of the reflected photon exiting on the light side must be matched by a
reaction Reaction may refer to a process or to a response to an action, event, or exposure. Physics and chemistry *Chemical reaction *Nuclear reaction *Reaction (physics), as defined by Newton's third law * Chain reaction (disambiguation) Biology and ...
on the vane that reflected it. The actual pressure exerted by light is far too small to move these vanes, but can be measured with devices such as the
Nichols radiometer A Nichols radiometer was the apparatus used by Ernest Fox Nichols and Gordon Ferrie Hull in 1901 for the measurement of radiation pressure. It consisted of a pair of small silvered glass mirrors suspended in the manner of a torsion balance b ...
. It is in fact possible to make the radiometer spin in the opposite direction by either heating it or putting it in a cold environment (like a freezer) in absence of light, when black sides become cooler than the white ones due to the thermal radiation. Another incorrect theory was that the heat on the dark side was causing the material to outgas, which pushed the radiometer around. This was later effectively disproved by both Schuster's experiments (1876) and Lebedev's (1901)


Partially correct theory

A partial explanation is that gas
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s hitting the warmer side of the vane will pick up some of the heat, bouncing off the vane with increased speed. Giving the molecule this extra boost effectively means that a minute pressure is exerted on the vane. The imbalance of this effect between the warmer black side and the cooler silver side means the net pressure on the vane is equivalent to a push on the black side and as a result the vanes spin round with the black side trailing. The problem with this idea is that while the faster moving molecules produce more force, they also do a better job of stopping other molecules from reaching the vane, so the net force on the vane should be the same. The greater temperature causes a decrease in local density which results in the same force on both sides. Years after this explanation was dismissed,
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
showed that the two pressures do not cancel out exactly at the edges of the vanes because of the temperature difference there. The force predicted by Einstein would be enough to move the vanes, but not fast enough.


Currently accepted theory

The currently accepted theory was formulated by
Osborne Reynolds Osborne Reynolds (23 August 1842 – 21 February 1912) was an Irish-born British innovator in the understanding of fluid dynamics. Separately, his studies of heat transfer between solids and fluids brought improvements in boiler and condenser ...
, who theorized that thermal transpiration was the cause of the motion. Reynolds found that if a porous plate is kept hotter on one side than the other, the interactions between gas molecules and the plates are such that gas will flow through from the cooler to the hotter side. The vanes of a typical Crookes radiometer are not porous, but the space past their edges behaves like the pores in Reynolds's plate. As gas moves from the cooler to the hotter side, the pressure on the hotter side increases. When the plate is fixed, the pressure on the hotter side increases until the ratio of pressures between the sides equals the square root of the ratio of absolute temperatures. Because the plates in a radiometer are not fixed, the pressure difference from cooler to hotter side causes the vane to move. The cooler (white) side moves forward, pushed by the higher pressure behind it. From a molecular point of view, the vane moves due to the tangential force of the rarefied gas colliding differently with the edges of the vane between the hot and cold sides. The Reynolds paper went unpublished for a while because it was refereed by Maxwell, who then published a paper of his own, which contained a critique of the mathematics in Reynolds's unpublished paper. Maxwell died that year and the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
refused to publish Reynolds's critique of Maxwell's rebuttal to Reynolds's unpublished paper, as it was felt that this would be an inappropriate argument when one of the people involved had already died.


All-black light mill

To rotate, a light mill does not have to be coated with different colors across each vane. In 2009, researchers at the
University of Texas, Austin The University of Texas at Austin (UT Austin, UT, or Texas) is a public research university in Austin, Texas, United States. Founded in 1883, it is the flagship institution of the University of Texas System. With 53,082 students as of fall 20 ...
created a monocolored light mill which has four curved vanes; each vane forms a convex and a concave surface. The light mill is uniformly coated by gold nanocrystals, which are a strong light absorber. Upon exposure, due to geometric effect, the convex side of the vane receives more photon energy than the concave side does, and subsequently the gas molecules receive more heat from the convex side than from the concave side. At rough vacuum, this asymmetric heating effect generates a net gas movement across each vane, from the concave side to the convex side, as shown by the researchers' direct simulation Monte Carlo modeling. The gas movement causes the light mill to rotate with the concave side moving forward, due to
Newton's third law Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body re ...
. This monocolored design promotes the fabrication of micrometer- or
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
-scaled light mills, as it is difficult to pattern materials of distinct optical properties within a very narrow, three-dimensional space.


Horizontal vane light mill

The thermal creep from the hot side of a vane to the cold side has been demonstrated in a mill with horizontal vanes that have a two-tone surface with a black half and a white half. This design is called a Hettner radiometer. This radiometer's angular speed was found to be limited by the behavior of the drag force due to the gas in the vessel more than by the behavior of the thermal creep force. This design does not experience the Einstein effect because the faces are parallel to the temperature gradient.


Nanoscale light mill

In 2010 researchers at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
, succeeded in building a
nanoscale Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
light mill that works on an entirely different principle to the Crookes radiometer. A
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
light mill, only 100 nanometers in diameter, was built and illuminated by laser light that had been tuned. The possibility of doing this had been suggested by the Princeton physicist Richard Beth in 1936. The torque was greatly enhanced by the resonant coupling of the incident light to plasmonic waves in the gold structure.


Practical applications

The radiometric effect has not been often used for practical applications. Marcel Bétrisey made in 2001 two different clocks (Le Chronolithe and Conti) powered by the light. Their pendulums had bulb lamps located outside the glass dôme and pointing against 4 mica vanes. One meter pendulum gives one second, two lamps placed in either side light up alternately, thus “pushing” the 4 kilos pendulum each time. As there was vacuum inside, its accuracy was of the order of 2 seconds per month. Radiometers are now commonly sold worldwide as a novelty ornament; needing no batteries, but only light to get the vanes to turn. They come in various forms, such as the one pictured, and are often used in
science museum A science museum is a museum devoted primarily to science. Older science museums tended to concentrate on static displays of objects related to natural history, paleontology, geology, Industry (manufacturing), industry and Outline of industrial ...
s to illustrate "radiation pressure" – a scientific principle that they do not in fact demonstrate.


See also

*
Crookes tube A Crookes tube: light and dark. Electrons (cathode rays) travel in straight lines from the cathode ''(left)'', as shown by the shadow cast by the metal Maltese cross on the fluorescence of the righthand glass wall of the tube. The anode is the ...
*
Marangoni effect The Marangoni effect (also called the Gibbs–Marangoni effect) is the mass transfer along an Interface (chemistry), interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may ...
*
Nichols radiometer A Nichols radiometer was the apparatus used by Ernest Fox Nichols and Gordon Ferrie Hull in 1901 for the measurement of radiation pressure. It consisted of a pair of small silvered glass mirrors suspended in the manner of a torsion balance b ...
* Photophoresis *
Solar energy Solar energy is the radiant energy from the Sun's sunlight, light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is a ...
*
Solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
* Thermophoresis


References

;General information * Loeb, Leonard B. (1934) ''The Kinetic Theory of Gases (2nd Edition)'';McGraw-Hill Book Company; pp 353–386 * Kennard, Earle H. (1938) ''Kinetic Theory of Gases''; McGraw-Hill Book Company; pp 327–337 ;Patents *


External links


Crooke's Radiometer applet




* . 1933 Bell and Green experiment describing the effect of different gas pressures on the vanes.
The Properties of the Force Exerted in a Radiometerarchived
*Radiometric clocks made by Marcel Bétrisey:
Le Chronolithe
and
Conti
{{DEFAULTSORT:Crookes Radiometer Hot air engines Electromagnetic radiation meters Radiometry External combustion engines Heat transfer Energy conversion Novelty items 19th-century inventions British inventions Articles containing video clips