Critical heat flux (CHF) describes the thermal limit of a phenomenon where a phase change occurs during heating (such as bubbles forming on a metal surface used to heat
water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
), which suddenly decreases the efficiency of
heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction ...
, thus causing localised overheating of the heating surface.
The critical heat flux for
ignition is the lowest thermal load per unit area capable of initiating a
combustion
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combust ...
reaction on a given material (either
flame
A flame (from Latin '' flamma'') is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density the ...
or
smoulder ignition).
Description
When
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, an ...
coolant
A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corros ...
undergoes a change in
phase due to the
absorption of heat from a heated solid surface, a higher
transfer rate occurs. The more efficient heat transfer from the heated surface (in the form of
heat of vaporization
The enthalpy of vaporization (symbol ), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy ( enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. ...
plus
sensible heat
Sensible heat is heat exchanged by a body or thermodynamic system in which the exchange of heat changes the temperature of the body or system, and some macroscopic variables of the body or system, but leaves unchanged certain other macroscopic vari ...
) and the motions of the bubbles (bubble-driven
turbulence
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
and
convection
Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
) leads to rapid mixing of the
fluid
In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shea ...
. Therefore, ''
boiling
Boiling is the rapid vaporization of a liquid, which occurs when a liquid is heated to its boiling point, the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. T ...
heat transfer'' has played an important role in industrial heat transfer processes such as
macroscopic
The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic.
Overview
When applied to physical phenomena ...
heat transfer
exchangers in
nuclear
Nuclear may refer to:
Physics
Relating to the nucleus of the atom:
*Nuclear engineering
*Nuclear physics
*Nuclear power
*Nuclear reactor
*Nuclear weapon
*Nuclear medicine
*Radiation therapy
*Nuclear warfare
Mathematics
*Nuclear space
* Nuclear ...
and fossil power plants, and in microscopic heat transfer devices such as heat
pipes
Pipe(s), PIPE(S) or piping may refer to:
Objects
* Pipe (fluid conveyance), a hollow cylinder following certain dimension rules
** Piping, the use of pipes in industry
* Smoking pipe
** Tobacco pipe
* Half-pipe and quarter pipe, semi-circul ...
and
microchannel
Micro Channel architecture, or the Micro Channel bus, is a proprietary 16- or 32-bit parallel computer bus introduced by IBM in 1987 which was used on PS/2 and other computers until the mid-1990s. Its name is commonly abbreviated as "MCA", alt ...
s for cooling
electronic
Electronic may refer to:
*Electronics, the science of how to control electric energy in semiconductor
* ''Electronics'' (magazine), a defunct American trade journal
*Electronic storage, the storage of data using an electronic device
*Electronic co ...
chips
''CHiPs'' is an American crime drama television series created by Rick Rosner and originally aired on NBC from September 15, 1977, to May 1, 1983. It follows the lives of two motorcycle officers of the California Highway Patrol (CHP). The seri ...
.
The use of boiling is limited by a condition called critical heat flux (CHF), which is also called a
boiling
Boiling is the rapid vaporization of a liquid, which occurs when a liquid is heated to its boiling point, the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. T ...
crisis or departure from
nucleate boiling Nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, ...
(DNB). The most serious problem is that the boiling limitation can be directly related to the physical burnout of the materials of a heated surface due to the suddenly inefficient heat transfer through a
vapor
In physics, a vapor (American English) or vapour (British English and Canadian English; see spelling differences) is a substance in the gas phase at a temperature lower than its critical temperature,R. H. Petrucci, W. S. Harwood, and F. G. H ...
film formed across the surface resulting from the replacement of liquid by vapor adjacent to the heated surface.
Consequently, the occurrence of CHF is accompanied by an inordinate increase in the surface temperature for a surface-heat-flux-controlled system. Otherwise, an inordinate decrease of the heat transfer rate occurs for a surface-temperature-controlled system. This can be explained with
Newton's law of cooling:
:
where
represents the heat flux,
represents the
heat transfer coefficient
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ). ...
,
represents the wall temperature and
represents the fluid temperature. If
decreases significantly due to the occurrence of the CHF condition,
will increase for fixed
and
while
will decrease for fixed
.
Correlations
The critical heat flux is an important point on the boiling curve and it may be desirable to operate a boiling process near this point. However, one could become cautious of dissipating heat in excess of this amount. Zuber, through a hydrodynamic stability analysis of the problem has developed an expression to approximate this point.
:
Units: critical flux: kW/m; h: kJ/kg; σ: N/m; ρ: kg/m; g: m/s.
It is independent of the surface material and is weakly dependent upon the heated surface geometry described by the constant C. For large horizontal cylinders, spheres and large finite heated surfaces, the value of the Zuber constant
. For large horizontal plates, a value of
is more suitable.
The critical heat flux depends strongly on pressure. At low pressures (including atmospheric pressure), the pressure dependence is mainly through the change in vapor density leading to an increase in the critical heat flux with pressure. However, as pressures approach the critical pressure, both the surface tension and the heat of vaporization converge to zero, making them the dominant sources of pressure dependency.
For water at 1atm, the above equation calculates a critical heat flux of approximately 1000 kW/m.
Applications in heat transfer
The understanding of CHF phenomenon and an accurate prediction of the CHF condition are important for safe and economic design of many
heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction ...
units including
nuclear reactors
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
,
fossil fuel boiler
A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, centr ...
s,
fusion reactors, electronic chips, etc. Therefore, the phenomenon has been investigated extensively over the world since
Nukiyama first characterized it. In 1950
Kutateladze suggested the hydrodynamical theory of the burnout crisis. Much of significant work has been done during the last decades with the development of water-cooled
nuclear reactor
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s. Now many aspects of the phenomenon are well understood and several reliable
prediction
A prediction (Latin ''præ-'', "before," and ''dicere'', "to say"), or forecast, is a statement about a future event or data. They are often, but not always, based upon experience or knowledge. There is no universal agreement about the exac ...
model
A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure.
Models c ...
s are available for conditions of common interests.
Terminology
A number of different terms are used to denote the CHF condition: departure from nucleate boiling (DNB), liquid film dryout (LFD), annular film dryout (AFD), dryout (DO), burnout (BO), boiling crisis (BC), boiling transition (BT), etc. DNB, LFD and AFD represent specific mechanisms which will be introduced later.
DO means the disappearance of liquid on the heat transfer surface which properly describes the CHF condition; however, it is usually used to indicate the liquid film dryout from
annular flow. BO, BC and BT are phenomenon-oriented names and are used as general terms. The CHF condition (or simply the CHF) is the most widely used today, though it may mislead one to think that there exists a criticality in the heat flux. The terms denoting the value of heat flux at the CHF occurrence are CHF, dryout heat flux, burnout heat flux, maximum heat flux, DNB heat flux, etc.
The term peak pool boiling heat flux is also used to denote the CHF in pool boiling.
Post-CHF is used to denote the general heat transfer deterioration in flow boiling process, and liquid could be in the form of dispersed spray of droplets, continuous liquid core, or transition between the former two cases. Post-dryout can be specifically used to denote the heat transfer deterioration in the condition when liquid is only in the form of dispersed droplets, and denote the other cases by the term Post-DNB.
[Yu, D., Feuerstein, F., Koeckert, L., & Cheng, X. (2018). Analysis and modeling of post-dryout heat transfer in upward vertical flow. Annals of Nuclear Energy, 115, 186-194.]
See also
*
Leidenfrost effect
The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this r ...
*
Nucleate boiling Nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, ...
References
{{Reflist
External links
Modeling of the boiling crisis
Thermodynamics