Operation
Control action
Valve positioners
The fundamental function of a positioner is to deliver pressurized air to the valve actuator, such that the position of the valve stem or shaft corresponds to the set point from the control system. Positioners are typically used when a valve requires throttling action. A positioner requires position feedback from the valve stem or shaft and delivers pneumatic pressure to the actuator to open and close the valve. The positioner must be mounted on or near the control valve assembly. There are three main categories of positioners, depending on the type of control signal, the diagnostic capability, and the communication protocol: pneumatic, analog, and digital. Processing units may use pneumatic pressure signaling as the control set point to the control valves. Pressure is typically modulated between 20.7 and 103 kPa (3 to 15 psig) to move the valve from 0 to 100% position. In a common pneumatic positioner the position of the valve stem or shaft is compared with the position of a bellows that receives the pneumatic control signal. When the input signal increases, the bellows expands and moves a beam. The beam pivots about an input axis, which moves a flapper closer to the nozzle. The nozzle pressure increases, which increases the output pressure to the actuator through a pneumatic amplifier relay. The increased output pressure to the actuator causes the valve stem to move. Stem movement is fed back to the beam by means of a cam. As the cam rotates, the beam pivots about the feedback axis to move the flapper slightly away from the nozzle. The nozzle pressure decreases and reduces the output pressure to the actuator. Stem movement continues, backing the flapper away from the nozzle until equilibrium is reached. When the input signal decreases, the bellows contracts (aided by an internal range spring) and the beam pivots about the input axis to move the flapper away from the nozzle. Nozzle decreases and the relay permits the release of diaphragm casing pressure to the atmosphere, which allows the actuator stem to move upward. Through the cam, stem movement is fed back to the beam to reposition the flapper closer to the nozzle. When equilibrium conditions are obtained, stem movement stops and the flapper is positioned to prevent any further decrease in actuator pressure. The second type of positioner is an analog I/P positioner. Most modern processing units use a 4 to 20 mA DC signal to modulate the control valves. This introduces electronics into the positioner design and requires that the positioner convert the electronic current signal into a pneumatic pressure signal (current-to-pneumatic or I/P). In a typical analog I/P positioner, the converter receives a DC input signal and provides a proportional pneumatic output signal through a nozzle/flapper arrangement. The pneumatic output signal provides the input signal to the pneumatic positioner. Otherwise, the design is the same as the pneumatic positioner While pneumatic positioners and analog I/P positioners provide basic valve position control, digital valve controllers add another dimension to positioner capabilities. This type of positioner is a microprocessor-based instrument. The microprocessor enables diagnostics and two-way communication to simplify setup and troubleshooting. In a typical digital valve controller, the control signal is read by the microprocessor, processed by a digital algorithm, and converted into a drive current signal to the I/P converter. The microprocessor performs the position control algorithm rather than a mechanical beam, cam, and flapper assembly. As the control signal increases, the drive signal to the I/P converter increases, increasing the output pressure from the I/P converter. This pressure is routed to a pneumatic amplifier relay and provides two output pressures to the actuator. With increasing control signal, one output pressure always increases and the other output pressure decreases Double-acting actuators use both outputs, whereas single-acting actuators use only one output. The changing output pressure causes the actuator stem or shaft to move. Valve position is fed back to the microprocessor. The stem continues to move until the correct position is attained. At this point, the microprocessor stabilizes the drive signal to the I/P converter until equilibrium is obtained. In addition to the function of controlling the position of the valve, a digital valve controller has two additional capabilities: diagnostics and two-way digital communication. Widely used communication protocols include HART, FOUNDATION fieldbus, and PROFIBUS. Advantages of placing a smart positioner on a control valve: 1. Automatic calibration and configuration of positioner. 2. Real time diagnostics. 3. Reduced cost of loop commissioning, including installation and calibration. 4. Use of diagnostics to maintain loop performance levels. 5. Improved process control accuracy that reduces process variability.Types of control valve
Control valves are classified by attributes and features.Based on the pressure drop profile
*High recovery valve: These valves typically regain most of static pressure drop from the inlet to vena contracta at the outlet. They are characterised by a lower recovery coefficient. Examples: butterfly valve, ball valve, plug valve, gate valve *Low recovery valve: These valves typically regain little of the static pressure drop from the inlet to vena contracta at the outlet. They are characterised by a higher recovery coefficient. Examples: globe valve, angle valveBased on the movement profile of the controlling element
*Sliding stem: The valve stem / plug moves in a linear, or straight line motion. Examples: Globe valve, angle valve, wedge type gate valve *Rotary valve: The valve disc rotates. Examples: Butterfly valve, ball valveBased on the functionality
*Control valve: Controls flow parameters proportional to an input signal received from the central control system. Examples: Globe valve, angle valve, ball valve *Shut-off / On-off valve: These valves are either completely open or closed. Examples: Gate valve, ball valve, globe valve, angle valve, pinch valve, diaphragm valve *Check valve: Allows flow only in a single direction *Steam conditioning valve: Regulates the pressure and temperature of inlet media to required parameters at outlet. Examples: Turbine bypass valve, process steam letdown station *Spring-loaded safety valve: Closed by the force of a spring, which retracts to open when the inlet pressure is equal to the spring forceBased on the actuating medium
*Manual valve: Actuated by hand wheel *Pneumatic valve: Actuated using a compressible medium like air, hydrocarbon, or nitrogen, with a spring diaphragm, piston cylinder or piston-spring type actuator *Hydraulic valve: Actuated by a non-compressible medium such as water or oil *Electric valve: Actuated by an electric motor A wide variety of valve types and control operation exist. However, there are two main forms of action, the sliding stem and the rotary. The most common and versatile types of control valves are sliding-stem globe, V-notch ball, butterfly and angle types. Their popularity derives from rugged construction and the many options available that make them suitable for a variety of process applications.List of common types of control valve
*Sliding stem ** ** ** ** *Rotary ** ** *Other ** **See also
* * * * * * * * * * * *References
External links