HOME

TheInfoList



OR:

In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established
fact A fact is a datum about one or more aspects of a circumstance, which, if accepted as true and proven true, allows a logical conclusion to be reached on a true–false evaluation. Standard reference works are often used to check facts. Scient ...
. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's
law of noncontradiction In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the sa ...
states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect." In modern formal logic and type theory, the term is mainly used instead for a ''single'' proposition, often denoted by the
falsum The up tack or falsum (⊥, \bot in LaTeX, U+22A5 in Unicode) is a constant symbol used to represent: * The truth value 'false', or a logical constant denoting a proposition in logic that is always false (often called "falsum" or "absurdum"). * ...
symbol \bot; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a self-contradictory proposition). This can be generalized to a collection of propositions, which is then said to "contain" a contradiction.


History

By creation of a paradox, Plato's '' Euthydemus'' dialogue demonstrates the need for the notion of ''contradiction''. In the ensuing dialogue, Dionysodorus denies the existence of "contradiction", all the while that Socrates is contradicting him: Indeed, Dionysodorus agrees that "there is no such thing as false opinion ... there is no such thing as ignorance", and demands of Socrates to "Refute me." Socrates responds "But how can I refute you, if, as you say, to tell a falsehood is impossible?".


In formal logic

In classical logic, particularly in
propositional In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
and first-order logic, a proposition \varphi is a contradiction if and only if \varphi\vdash\bot. Since for contradictory \varphi it is true that \vdash\varphi\rightarrow\psi for all \psi (because \bot\vdash\psi), one may prove any proposition from a set of axioms which contains contradictions. This is called the " principle of explosion", or "ex falso quodlibet" ("from falsity, anything follows"). In a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
logic, a formula is contradictory if and only if it is unsatisfiable.


Proof by contradiction

For a set of consistent premises \Sigma and a proposition \varphi, it is true in
classical logic Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class ...
that \Sigma \vdash\varphi (i.e., \Sigma proves \varphi) if and only if \Sigma \cup \ \vdash \bot (i.e., \Sigma and \neg\varphi leads to a contradiction). Therefore, a
proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a con ...
that \Sigma \cup \ \vdash \bot also proves that \varphi is true under the premises \Sigma. The use of this fact forms the basis of a proof technique called proof by contradiction, which mathematicians use extensively to establish the validity of a wide range of theorems. This applies only in a logic where the law of excluded middle A\vee\neg A is accepted as an axiom. Using
minimal logic Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion (' ...
, a logic with similar axioms to classical logic but without ''ex falso quodlibet'' and proof by contradiction, we can investigate the axiomatic strength and properties of various rules that treat contradiction by considering theorems of classical logic that are not theorems of minimal logic. Each of these extensions leads to an intermediate logic: # Double-negation elimination (DNE) is the strongest principle, axiomatised \neg\neg A \implies A, and when it is added to minimal logic yields classical logic. # Ex falso quodlibet (EFQ), axiomatised \bot \implies A, licenses many consequences of negations, but typically does not help inferring propositions that do not involve absurdity from consistent propositions that do. When added to minimal logic, EFQ yields intuitionistic logic. EFQ is equivalent to ''ex contradictione quodlibet'', axiomatised A \land \neg A \implies B, over minimal logic. # Peirce's rule (PR) is an axiom ((A \implies B) \implies A) \implies A that captures proof by contradiction without explicitly referring to absurdity. Minimal logic + PR + EFQ yields classical logic. # The Gödel-Dummett (GD) axiom A \implies B \vee B \implies A, whose most simple reading is that there is a linear order on truth values. Minimal logic + GD yields
Gödel-Dummett logic In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediat ...
. Peirce's rule entails but is not entailed by GD over minimal logic. # Law of the excluded middle (LEM), axiomatised A \vee \neg A, is the most often cited formulation of the principle of bivalence, but in the absence of EFQ it does not yield full classical logic. Minimal logic + LEM + EFQ yields classical logic. PR entails but is not entailed by LEM in minimal logic. If the formula B in Peirce's rule is restricted to absurdity, giving the axiom schema (\neg A \implies A) \implies A, the scheme is equivalent to LEM over minimal logic. # Weak law of the excluded middle (WLEM) is axiomatised \neg A \vee \neg\neg A and yields a system where disjunction behaves more like in classical logic than intuitionistic logic, i.e. the disjunction and existence properties don't hold, but where use of non-intuitionistic reasoning is marked by occurrences of double-negation in the conclusion. LEM entails but is not entailed by WLEM in minimal logic. WLEM is equivalent to the instance of De Morgan's law that distributes negation over conjunction: \neg(A \land B) \iff (\neg A) \vee (\neg B).


Symbolic representation

In mathematics, the symbol used to represent a contradiction within a proof varies. Some symbols that may be used to represent a contradiction include ↯, Opq, \Rightarrow \Leftarrow, ⊥, \leftrightarrow \ \!\!\!\!\!\!\!/ , and ※; in any symbolism, a contradiction may be substituted for the truth value " false", as symbolized, for instance, by "0" (as is common in boolean algebra). It is not uncommon to see
Q.E.D. Q.E.D. or QED is an initialism of the Latin phrase , meaning "which was to be demonstrated". Literally it states "what was to be shown". Traditionally, the abbreviation is placed at the end of mathematical proofs and philosophical arguments in pri ...
, or some of its variants, immediately after a contradiction symbol. In fact, this often occurs in a proof by contradiction to indicate that the original assumption was proved false—and hence that its negation must be true.


The notion of contradiction in an axiomatic system and a proof of its consistency

In general, a consistency proof requires the following two things: # An axiomatic system # A demonstration that it is ''not'' the case that both the formula ''p'' and its negation ''~p'' can be derived in the system. But by whatever method one goes about it, all consistency proofs would ''seem'' to necessitate the primitive notion of ''contradiction.'' Moreover, it ''seems'' as if this notion would simultaneously have to be "outside" the formal system in the definition of tautology. When Emil Post, in his 1921 "Introduction to a General Theory of Elementary Propositions", extended his proof of the consistency of the propositional calculus (i.e. the logic) beyond that of '' Principia Mathematica'' (PM), he observed that with respect to a ''generalized'' set of postulates (i.e. axioms), he would no longer be able to automatically invoke the notion of "contradiction"such a notion might not be contained in the postulates: Post's solution to the problem is described in the demonstration "An Example of a Successful Absolute Proof of Consistency", offered by Ernest Nagel and
James R. Newman James Roy Newman (1907–1966) was an American mathematician and mathematical historian. He was also a lawyer, practicing in the state of New York from 1929 to 1941. During and after World War II, he held several positions in the United States go ...
in their 1958 '' Gödel's Proof''. They too observed a problem with respect to the notion of "contradiction" with its usual "truth values" of "truth" and "falsity". They observed that: Given some "primitive formulas" such as PM's primitives S1 V S2 nclusive ORand ~S (negation), one is forced to define the axioms in terms of these primitive notions. In a thorough manner, Post demonstrates in PM, and defines (as do Nagel and Newman, see below) that the property of ''tautologous'' – as yet to be defined – is "inherited": if one begins with a set of tautologous axioms (postulates) and a deduction system that contains
substitution Substitution may refer to: Arts and media *Chord substitution, in music, swapping one chord for a related one within a chord progression * Substitution (poetry), a variation in poetic scansion * "Substitution" (song), a 2009 song by Silversun Pi ...
and
modus ponens In propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a deductive argument form and rule of inference. ...
, then a ''consistent'' system will yield only tautologous formulas. On the topic of the definition of ''tautologous'', Nagel and Newman create two mutually exclusive and exhaustive classes K1 and K2, into which fall (the outcome of) the axioms when their variables (e.g. S1 and S2 are assigned from these classes). This also applies to the primitive formulas. For example: "A formula having the form S1 V S2 is placed into class K2, if both S1 and S2 are in K2; otherwise it is placed in K1", and "A formula having the form ~S is placed in K2, if S is in K1; otherwise it is placed in K1". Hence Nagel and Newman can now define the notion of '' tautologous'': "a formula is a tautology if and only if it falls in the class K1, no matter in which of the two classes its elements are placed". This way, the property of "being tautologous" is described—without reference to a model or an interpretation. Post observed that, if the system were inconsistent, a deduction in it (that is, the last formula in a sequence of formulas derived from the tautologies) could ultimately yield S itself. As an assignment to variable S can come from either class K1 or K2, the deduction violates the inheritance characteristic of tautology (i.e., the derivation must yield an evaluation of a formula that will fall into class K1). From this, Post was able to derive the following definition of inconsistency—''without the use of the notion of contradiction'': In other words, the notion of "contradiction" can be dispensed when constructing a proof of consistency; what replaces it is the notion of "mutually exclusive and exhaustive" classes. An axiomatic system need not include the notion of "contradiction".


Philosophy

Adherents of the
epistemological Epistemology (; ), or the theory of knowledge, is the branch of philosophy concerned with knowledge. Epistemology is considered a major subfield of philosophy, along with other major subfields such as ethics, logic, and metaphysics. Episte ...
theory of coherentism typically claim that as a necessary condition of the justification of a belief, that belief must form a part of a logically non-contradictory
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
of beliefs. Some dialetheists, including Graham Priest, have argued that coherence may not require consistency.


Pragmatic contradictions

A pragmatic contradiction occurs when the very statement of the argument contradicts the claims it purports. An inconsistency arises, in this case, because the act of utterance, rather than the content of what is said, undermines its conclusion.


Dialectical materialism

In
dialectical materialism Dialectical materialism is a philosophy of science, history, and nature developed in Europe and based on the writings of Karl Marx and Friedrich Engels. Marxist dialectics, as a materialist philosophy, emphasizes the importance of real-world con ...
: Contradiction—as derived from
Hegelianism Georg Wilhelm Friedrich Hegel (; ; 27 August 1770 – 14 November 1831) was a German philosopher. He is one of the most important figures in German idealism and one of the founding figures of modern Western philosophy. His influence extends a ...
—usually refers to an opposition inherently existing within one realm, one unified force or object. This contradiction, as opposed to metaphysical thinking, is not an objectively impossible thing, because these contradicting forces exist in objective reality, not cancelling each other out, but actually defining each other's existence. According to Marxist theory, such a contradiction can be found, for example, in the fact that: * (a) enormous wealth and productive powers coexist alongside: * (b) extreme poverty and misery; * (c) the existence of (a) being contrary to the existence of (b). Hegelian and Marxist theory stipulates that the
dialectic Dialectic ( grc-gre, διαλεκτική, ''dialektikḗ''; related to dialogue; german: Dialektik), also known as the dialectical method, is a discourse between two or more people holding different points of view about a subject but wishing ...
nature of history will lead to the
sublation () or () is a German word with several seemingly contradictory meanings, including "to lift up", "to abolish", "cancel" or "suspend", or "to sublate". The term has also been defined as "abolish", "preserve", and "transcend". In philosophy, i ...
, or
synthesis Synthesis or synthesize may refer to: Science Chemistry and biochemistry *Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors ** Organic synthesis, the chemical synthesis of organ ...
, of its contradictions. Marx therefore postulated that history would logically make capitalism evolve into a
socialist society The Socialist Society was founded in 1981 by a group of British socialists, including Raymond Williams and Ralph Miliband, who founded it as an organisation devoted to socialist education and research, linking the left of the British Labour Party ...
where the means of production would equally serve the exploited and suffering class of society, thus resolving the prior contradiction between (a) and (b). Mao Zedong's philosophical essay ''On Contradiction'' (1937) furthered Marx and Lenin's thesis and suggested that all existence is the result of contradiction.


Outside formal logic

Colloquial usage can label actions or statements as contradicting each other when due (or perceived as due) to
presupposition In the branch of linguistics known as pragmatics, a presupposition (or PSP) is an implicit assumption about the world or background belief relating to an utterance whose truth is taken for granted in discourse. Examples of presuppositions include ...
s which are contradictory in the logical sense. Proof by contradiction is used in
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
to construct
proofs Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a co ...
. The scientific method uses contradiction to falsify bad theory.


See also

* , a Monty Python sketch in which one of the two disputants repeatedly uses only contradictions in his argument * * * * * * Graham's hierarchy of disagreement * *
Law of noncontradiction In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the sa ...
* * * * * *


Notes and references


Bibliography

* Józef Maria Bocheński 1960 ''Précis of Mathematical Logic'', translated from the French and German editions by Otto Bird, D. Reidel, Dordrecht, South Holland. * Jean van Heijenoort 1967 ''From Frege to Gödel: A Source Book in Mathematical Logic 1879-1931'', Harvard University Press, Cambridge, MA, (pbk.) *Ernest Nagel and James R. Newman 1958 ''Gödel's Proof'', New York University Press, Card Catalog Number: 58-5610.


External links

* * * {{Authority control Propositional calculus Marxist theory Mathematical logic Sentences by type Propositions Immediate inference Cognitive dissonance