In
mathematics, more precisely in
symplectic geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...
, a
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Eucl ...
of a
symplectic manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called s ...
is said to be of contact type if there is 1-form
such that
and
is a
contact manifold
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution m ...
, where
is the natural inclusion. The terminology was first coined by
Alan Weinstein
Alan David Weinstein (17 June, 1943, New York City) is a professor of mathematics at the University of California, Berkeley, working in the field of differential geometry, and especially in Poisson geometry.
Education and career
Weinstein o ...
.
See also
*
Weinstein conjecture
References
*
*
Symplectic geometry
{{differential-geometry-stub