In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, a conservation law states that a particular measurable property of an isolated
physical system
A physical system is a collection of physical objects.
In physics, it is a portion of the physical universe chosen for analysis. Everything outside the system is known as the environment. The environment is ignored except for its effects on the ...
does not change as the system evolves over time. Exact conservation laws include
conservation of energy,
conservation of linear momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
,
conservation of angular momentum, and
conservation of electric charge
In physics, charge conservation is the principle that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is alway ...
. There are also many approximate conservation laws, which apply to such quantities as
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
,
parity
Parity may refer to:
* Parity (computing)
** Parity bit in computing, sets the parity of data for the purpose of error detection
** Parity flag in computing, indicates if the number of set bits is odd or even in the binary representation of the r ...
,
lepton number,
baryon number,
strangeness,
hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all.
A local conservation law is usually expressed mathematically as a
continuity equation, a
partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity which flows in or out of the volume.
From
Noether's theorem, each conservation law is associated with a
symmetry in the underlying physics.
Conservation laws as fundamental laws of nature
Conservation laws are fundamental to our understanding of the physical world, in that they describe which processes can or cannot occur in nature. For example, the conservation law of energy states that the total quantity of energy in an isolated system does not change, though it may change form. In general, the total quantity of the property governed by that law remains unchanged during physical processes. With respect to classical physics, conservation laws include conservation of energy, mass (or matter), linear momentum, angular momentum, and electric charge. With respect to particle physics, particles cannot be created or destroyed except in pairs, where one is ordinary and the other is an antiparticle. With respect to symmetries and invariance principles, three special conservation laws have been described, associated with inversion or reversal of space, time, and charge.
Conservation laws are considered to be fundamental laws of nature, with broad application in physics, as well as in other fields such as chemistry, biology, geology, and engineering.
Most conservation laws are exact, or absolute, in the sense that they apply to all possible processes. Some conservation laws are partial, in that they hold for some processes but not for others.
One particularly important result concerning conservation laws is
Noether theorem, which states that there is a one-to-one correspondence between each one of them and a differentiable
symmetry of nature. For example, the conservation of energy follows from the time-invariance of physical systems, and the conservation of angular momentum arises from the fact that physical systems behave the same regardless of how they are oriented in space.
Exact laws
A partial listing of physical conservation equations
due to symmetry that are said to be exact laws, or more precisely ''have never been proven to be violated:''
Approximate laws
There are also approximate conservation laws. These are approximately true in particular situations, such as low speeds, short time scales, or certain interactions.
*
Conservation of ''macroscopic'' mechanical energy
*
Conservation of mass (approximately true for
nonrelativistic speeds)
* Conservation of
baryon number (See
chiral anomaly and
sphaleron)
* Conservation of
lepton number (In the
Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. I ...
)
* Conservation of
flavor (violated by the
weak interaction)
* Conservation of
strangeness (violated by the
weak interaction)
* Conservation of
space-parity (violated by the
weak interaction)
* Conservation of
charge-parity (violated by the
weak interaction)
* Conservation of
time-parity (violated by the
weak interaction)
* Conservation of
CP parity (violated by the
weak interaction); in the Standard Model, this is equivalent to conservation of
time-parity.
There are also conservation laws which appear approximate, but only because microscopic details are neglected. For instance, the conservation of mechanical energy was often considered to be non-exact because forces such as friction appear to convert mechanical energy into other forms. However, a close inspection of friction reveals that only conservative forces are involved (electromagnetic forces), and the heat energy produced by friction is actually mechanical in nature (in the form of kinetic and potential energy). In this manner, it was realized that mechanical energy, as defined as the sum of kinetic and potential energies, is in fact fully conserved in all circumstances. It is only ''macroscopic'' energy which is not.
Global and local conservation laws
The total amount of some conserved quantity in the universe could remain unchanged if an equal amount were to appear at one point ''A'' and simultaneously disappear from another separate point ''B''. For example, an amount of energy could appear on Earth without changing the total amount in the Universe if the same amount of energy were to disappear from some other region of the Universe. This weak form of "global" conservation is really not a conservation law because it is not
Lorentz invariant, so phenomena like the above do not occur in nature.
Due to
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The law ...
, if the appearance of the energy at ''A'' and disappearance of the energy at ''B'' are simultaneous in one
inertial reference frame, they
will not be simultaneous in other inertial reference frames moving with respect to the first. In a moving frame one will occur before the other; either the energy at ''A'' will appear ''before'' or ''after'' the energy at ''B'' disappears. In both cases, during the interval energy will not be conserved.
A stronger form of conservation law requires that, for the amount of a conserved quantity at a point to change, there must be a flow, or ''flux'' of the quantity into or out of the point. For example, the amount of
electric charge at a point is never found to change without an
electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movin ...
into or out of the point that carries the difference in charge. Since it only involves continuous ''
local'' changes, this stronger type of conservation law is
Lorentz invariant; a quantity conserved in one reference frame is conserved in all moving reference frames.
This is called a ''local conservation'' law.
Local conservation also implies global conservation; that the total amount of the conserved quantity in the Universe remains constant. All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a ''
continuity equation'', which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in general.
Differential forms
In
continuum mechanics
Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such ...
, the most general form of an exact conservation law is given by a
continuity equation. For example, conservation of electric charge ''q'' is
:
where ∇⋅ is the
divergence operator, ''ρ'' is the density of ''q'' (amount per unit volume), j is the flux of ''q'' (amount crossing a unit area in unit time), and ''t'' is time.
If we assume that the motion u of the charge is a continuous function of position and time, then
:
:
In one space dimension this can be put into the form of a homogeneous first-order
quasilinear hyperbolic equation:
[see Toro, p.43]
:
where the dependent variable ''y'' is called the ''density'' of a ''conserved quantity'', and ''A''(''y'') is called the ''
current Jacobian
Currents, Current or The Current may refer to:
Science and technology
* Current (fluid), the flow of a liquid or a gas
** Air current, a flow of air
** Ocean current, a current in the ocean
*** Rip current, a kind of water current
** Current (stre ...
'', and the
subscript notation for partial derivatives has been employed. The more general inhomogeneous case:
:
is not a conservation equation but the general kind of
balance equation describing a
dissipative system. The dependent variable ''y'' is called a ''nonconserved quantity'', and the inhomogeneous term ''s''(''y'',''x'',''t'') is the-''
source'', or
dissipation. For example, balance equations of this kind are the momentum and energy
Navier-Stokes equations, or the
entropy balance for a general
isolated system.
In the one-dimensional space a conservation equation is a first-order
quasilinear hyperbolic equation that can be put into the ''advection'' form:
:
where the dependent variable ''y''(''x'',''t'') is called the density of the ''conserved'' (scalar) quantity, and ''a''(''y'') is called the current coefficient, usually corresponding to the
partial derivative in the conserved quantity of a
current density
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional a ...
of the conserved quantity ''j''(''y''):
:
In this case since the
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
applies:
:
the conservation equation can be put into the current density form:
:
In a space with more than one dimension the former definition can be extended to an equation that can be put into the form:
:
where the ''conserved quantity'' is ''y''(r,''t''),
denotes the
scalar product, ''∇'' is the
nabla operator, here indicating a
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
, and ''a''(''y'') is a vector of current coefficients, analogously corresponding to the
divergence of a vector current density associated to the conserved quantity j(''y''):
:
This is the case for the
continuity equation:
:
Here the conserved quantity is the
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
, with
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
''ρ''(r,''t'') and current density ''ρ''u, identical to the
momentum density
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
, while u(r,''t'') is the
flow velocity.
In the general case a conservation equation can be also a system of this kind of equations (a
vector equation
In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables.
For example,
:\begin
3x+2y-z=1\\
2x-2y+4z=-2\\
-x+\fracy-z=0
\end
is a system of three equations in th ...
) in the form:
:
where y is called the ''conserved'' (vector) quantity, ∇ y is its
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
, 0 is the
zero vector, and A(y) is called the
Jacobian
In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to:
*Jacobian matrix and determinant
*Jacobian elliptic functions
*Jacobian variety
*Intermediate Jacobian
In mathematics, the intermediate Jacobian of a compact Kähler m ...
of the current density. In fact as in the former scalar case, also in the vector case A(y) usually corresponding to the Jacobian of a
current density matrix J(y):
:
and the conservation equation can be put into the form:
:
For example, this the case for Euler equations (fluid dynamics). In the simple incompressible case they are:
:
where:
*''u'' is the
flow velocity vector, with components in a N-dimensional space ''u''
1, ''u''
2, … ''u
N'',
*''s'' is the specific
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
(pressure per unit
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
) giving the
source term,
It can be shown that the conserved (vector) quantity and the current density matrix for these equations are respectively:
:
where ''
'' denotes the
outer product.
Integral and weak forms
Conservation equations can be also expressed in integral form: the advantage of the latter is substantially that it requires less smoothness of the solution, which paves the way to
weak form, extending the class of admissible solutions to include discontinuous solutions.
[see Toro, p.62-63] By integrating in any space-time domain the current density form in 1-D space:
:
and by using
Green's theorem, the integral form is:
:
In a similar fashion, for the scalar multidimensional space, the integral form is:
:
where the line integration is performed along the boundary of the domain, in an anticlockwise manner.
Moreover, by defining a
test function ''φ''(r,''t'') continuously differentiable both in time and space with compact support, the
weak form can be obtained pivoting on the
initial condition. In 1-D space it is:
:
Note that in the weak form all the partial derivatives of the density and current density have been passed on to the test function, which with the former hypothesis is sufficiently smooth to admit these derivatives.
See also
*
Invariant (physics)
*
Momentum
**
Cauchy momentum equation
*
Energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
**
Conservation of energy and the
First law of thermodynamics
*
Conservative system
*
Conserved quantity
In mathematics, a conserved quantity of a dynamical system is a function of the dependent variables, the value of which remains constant along each trajectory of the system.
Not all systems have conserved quantities, and conserved quantities are ...
** Some kinds of
helicity are conserved in dissipationless limit:
hydrodynamical helicity,
magnetic helicity,
cross-helicity.
*
Principle of mutability
*
Conservation law of the
Stress–energy tensor
*
Riemann invariant
*
Philosophy of physics
*
Totalitarian principle
*
Convection–diffusion equation
The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two ...
*
Uniformity of nature
Examples and applications
*
Advection
*
Mass conservation, or
Continuity equation
*
Charge conservation
*
Euler equations (fluid dynamics)
*inviscid
Burgers equation
*
Kinematic wave
*
Conservation of energy
*
Traffic flow
Notes
References
*Philipson, Schuster, ''Modeling by Nonlinear Differential Equations: Dissipative and Conservative Processes'', World Scientific Publishing Company 2009.
*
Victor J. Stenger, 2000. ''Timeless Reality: Symmetry, Simplicity, and Multiple Universes''. Buffalo NY: Prometheus Books. Chpt. 12 is a gentle introduction to symmetry, invariance, and conservation laws.
*
*E. Godlewski and P.A. Raviart, Hyperbolic systems of conservation laws, Ellipses, 1991.
External links
*
Conservation Laws— Ch. 11-15 in an online textbook
{{Authority control
Scientific laws
Symmetry
Thermodynamic systems