In
mathematics and
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, canonical coordinates are sets of
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is si ...
on
phase space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usual ...
which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the
Hamiltonian formulation of
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
. A closely related concept also appears in
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
; see the
Stone–von Neumann theorem and
canonical commutation relation
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
hat x,\hat p_ ...
s for details.
As Hamiltonian mechanics are generalized by
symplectic geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...
and
canonical transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canon ...
s are generalized by
contact transformations, so the 19th century definition of canonical coordinates in classical mechanics may be generalized to a more abstract 20th century definition of coordinates on the
cotangent bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
of a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
(the mathematical notion of phase space).
Definition in classical mechanics
In
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, canonical coordinates are coordinates
and
in
phase space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usual ...
that are used in the
Hamiltonian formalism. The canonical coordinates satisfy the fundamental
Poisson bracket
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. T ...
relations:
:
A typical example of canonical coordinates is for
to be the usual
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
, and
to be the components of
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
. Hence in general, the
coordinates are referred to as "conjugate momenta."
Canonical coordinates can be obtained from the
generalized coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 39 ...
of the
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
formalism by a
Legendre transformation
In mathematics, the Legendre transformation (or Legendre transform), named after Adrien-Marie Legendre, is an involutive transformation on real-valued convex functions of one real variable. In physical problems, it is used to convert function ...
, or from another set of canonical coordinates by a
canonical transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canon ...
.
Definition on cotangent bundles
Canonical coordinates are defined as a special set of
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is si ...
on the
cotangent bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
of a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
. They are usually written as a set of
or
with the ''x''s or ''q''s denoting the coordinates on the underlying manifold and the ''p''s denoting the conjugate momentum, which are
1-form
In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to \R whose restriction ...
s in the cotangent bundle at point ''q'' in the manifold.
A common definition of canonical coordinates is any set of coordinates on the cotangent bundle that allow the
canonical one-form
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus pro ...
to be written in the form
:
up to a total differential. A change of coordinates that preserves this form is a
canonical transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canon ...
; these are a special case of a
symplectomorphism
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the sy ...
, which are essentially a change of coordinates on a
symplectic manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called s ...
.
In the following exposition, we assume that the manifolds are real manifolds, so that cotangent vectors acting on tangent vectors produce real numbers.
Formal development
Given a manifold , a
vector field on (a
section
Section, Sectioning or Sectioned may refer to:
Arts, entertainment and media
* Section (music), a complete, but not independent, musical idea
* Section (typography), a subdivision, especially of a chapter, in books and documents
** Section sign ...
of the
tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
) can be thought of as a function acting on the
cotangent bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
, by the duality between the tangent and cotangent spaces. That is, define a function
:
such that
:
holds for all cotangent vectors in
. Here,
is a vector in
, the tangent space to the manifold at point . The function
is called the ''momentum function'' corresponding to .
In
local coordinates
Local coordinates are the ones used in a ''local coordinate system'' or a ''local coordinate space''. Simple examples:
* Houses. In order to work in a house construction, the measurements are referred to a control arbitrary point that will allow ...
, the vector field at point may be written as
:
where the
are the coordinate frame on . The conjugate momentum then has the expression
:
where the
are defined as the momentum functions corresponding to the vectors
:
:
The
together with the
together form a coordinate system on the cotangent bundle
; these coordinates are called the ''canonical coordinates''.
Generalized coordinates
In
Lagrangian mechanics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Lou ...
, a different set of coordinates are used, called the
generalized coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 39 ...
. These are commonly denoted as
with
called the generalized position and
the generalized velocity. When a
Hamiltonian is defined on the cotangent bundle, then the generalized coordinates are related to the canonical coordinates by means of the
Hamilton–Jacobi equation
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechan ...
s.
See also
*
Linear discriminant analysis
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features ...
*
Symplectic manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called s ...
*
Symplectic vector field In physics and mathematics, a symplectic vector field is one whose flow preserves a symplectic form. That is, if (M,\omega) is a symplectic manifold with smooth manifold M and symplectic form \omega, then a vector field X\in\mathfrak(M) in the ...
*
Symplectomorphism
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the sy ...
*
Kinetic momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
*
Complementarity (physics)
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot ...
References
*
*
Ralph Abraham and
Jerrold E. Marsden, ''Foundations of Mechanics'', (1978) Benjamin-Cummings, London {{isbn, 0-8053-0102-X ''See section 3.2''.
Differential topology
Symplectic geometry
Hamiltonian mechanics
Lagrangian mechanics
Coordinate systems
Moment (physics)