Nomenclature
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. While these two abbreviations have specific meanings in seismology (L-wave for Love wave or long wave) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they are not commonly found in physics writings except for some popular science books.Sound waves
For longitudinal harmonic sound waves, the frequency and wavelength can be described by the formula : where: : is the displacement of the point on the traveling sound wave;Speed of longitudinal waves
Isotropic medium
For isotropic solids and liquids, the speed of a longitudinal wave can be described by : where : is the elastic modulus, such that ::: where is the shear modulus and is the bulk modulus; : is the mass density of the medium.Attenuation of longitudinal waves
The attenuation of a wave in a medium describes the loss of energy a wave carries as it propagates throughout the medium. This is caused by the scattering of the wave at interfaces, the loss of energy due to the friction between molecules, or geometric divergence. The study of attenuation of elastic waves in materials has increased in recent years, particularly within the study of polycrystalline materials where researchers aim to "nondestructively evaluate the degree of damage of engineering components" and to "develop improved procedures for characterizing microstructures" according to a research team led by R. Bruce Thompson in a '' Wave Motion'' publication.Attenuation in viscoelastic materials
In viscoelastic materials, the attenuation coefficients per length for longitudinal waves and for transverse waves must satisfy the following ratio: : where and are the transverse and longitudinal wave speeds respectively.Attenuation in polycrystalline materials
Polycrystalline materials are made up of various crystal grains which form the bulk material. Due to the difference in crystal structure and properties of these grains, when a wave propagating through a poly-crystal crosses a grain boundary, aPressure waves
The equations for sound in a fluid given above also apply to acoustic waves in an elastic solid. Although solids also support transverse waves (known as S-waves in seismology), longitudinal sound waves in the solid exist with aElectromagnetics
Maxwell's equations lead to the prediction of electromagnetic waves in a vacuum, which are strictly transverse waves; due to the fact that they would need particles to vibrate upon, the electric and magnetic fields of which the wave consists are perpendicular to the direction of the wave's propagation. David J. Griffiths, Introduction to Electrodynamics, However plasma waves are longitudinal since these are not electromagnetic waves but density waves of charged particles, but which can couple to the electromagnetic field. After Heaviside's attempts to generalize Maxwell's equations, Heaviside concluded that electromagnetic waves were not to be found as longitudinal waves in "'' free space''" or homogeneous media. Maxwell's equations, as we now understand them, retain that conclusion: in free-space or other uniform isotropic dielectrics, electro-magnetic waves are strictly transverse. However electromagnetic waves can display a longitudinal component in the electric and/or magnetic fields when traversing birefringent materials, or inhomogeneous materials especially at interfaces (surface waves for instance) such as Zenneck waves. In the development of modern physics, Alexandru Proca (1897–1955) was known for developing relativistic quantum field equations bearing his name (Proca's equations) which apply to the massive vector spin-1 mesons. In recent decades some other theorists, such as Jean-Pierre Vigier and Bo Lehnert of the Swedish Royal Society, have used the Proca equation in an attempt to demonstrate photon mass as a longitudinal electromagnetic component of Maxwell's equations, suggesting that longitudinal electromagnetic waves could exist in a Dirac polarized vacuum. However photon rest mass is strongly doubted by almost all physicists and is incompatible with theSee also
* Transverse wave *References
Further reading
* Varadan, V. K., and Vasundara V. Varadan, "''Elastic wave scattering and propagation''". ''Attenuation due to scattering of ultrasonic compressional waves in granular media'' – A.J. Devaney, H. Levine, and T. Plona. Ann Arbor, Mich., Ann Arbor Science, 1982. * Schaaf, John van der, Jaap C. Schouten, and Cor M. van den Bleek, "''Experimental Observation of Pressure Waves in Gas-Solids Fluidized Beds''". American Institute of Chemical Engineers. New York, N.Y., 1997. * * * Russell, Dan, "''Longitudinal and Transverse Wave Motion''". Acoustics Animations, Pennsylvania State University, Graduate Program in Acoustics. * Longitudinal Waves, with animations "''The Physics Classroom''" {{Strings (music) Wave mechanics Articles containing video clips