In
medical genetics
Medical genetics is the branch
tics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care. For example, research on the caus ...
, compound heterozygosity is the condition of having two or more heterogeneous
recessive
In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and ...
alleles
An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution.
::"The chro ...
at a particular locus that can cause
genetic disease in a
heterozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mo ...
state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other (for example, both alleles might be mutated but at different locations). Compound heterozygosity reflects the diversity of the mutation base for many
autosomal recessive genetic disorders; mutations in most disease-causing genes have arisen many times. This means that many cases of disease arise in individuals who have two unrelated alleles, who technically are
heterozygotes, but both the alleles are defective.
These disorders are often best known in some classic form, such as the homozygous recessive case of a particular
mutation
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
that is widespread in some population. In its compound heterozygous forms, the disease may have lower
penetrance
Penetrance in genetics is the proportion of individuals carrying a particular variant (or allele) of a gene (the genotype) that also express an associated trait (the phenotype). In medical genetics, the penetrance of a disease-causing mutation is ...
, because the mutations involved are often less deleterious in combination than for a
homozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mo ...
individual with the classic symptoms of the disease. As a result, compound heterozygotes often become ill later in life, with less severe symptoms. Although compound heterozygosity as a cause of genetic disease had been suspected much earlier, widespread confirmation of the phenomenon was not feasible until the 1980s, when
polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
techniques for amplification of DNA made it cost-effective to sequence genes and identify polymorphic alleles.
__TOC__
Cause
Compound heterozygosity is one of the causes of variation in genetic disease. The diagnosis and nomenclature for such disorders sometimes reflects history, because most diseases were first observed and classified based on
biochemistry
Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology ...
and
pathophysiology
Pathophysiology ( physiopathology) – a convergence of pathology with physiology – is the study of the disordered physiological processes that cause, result from, or are otherwise associated with a disease or injury. Pathology is t ...
before genetic diagnosis was available. Some genetic disorders are really a family of related disorders that occur in the same
metabolic pathway
In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical ...
, or in related pathways. Naming conventions for the disease became established before precise molecular diagnosis was possible.
For example,
hemochromatosis
Iron overload or hemochromatosis (also spelled ''haemochromatosis'' in British English) indicates increased total accumulation of iron in the body from any cause and resulting organ damage. The most important causes are hereditary haemochromatos ...
is the name given to several different heritable diseases with the same outcome, excess absorption of iron. These variants all reflect a failure in a metabolic pathway associated with
iron
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
metabolism
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
, however mutations that cause hemochromatosis can occur at different gene loci. Mutations have occurred at each locus many times, and a few such mutations have become widespread in some population. The fact that multiple loci are involved is the primary cause for the variant forms of hemochromatosis and its outcome. This variation is caused not by compound heterozygosity, but rather by the fact that several different enzyme defects can cause the disease. Clinically, most cases of hemochromatosis are found in homozygotes for the most common mutation in the
HFE gene
Human homeostatic iron regulator protein, also known as the HFE protein (High FE2+), is a protein which in humans is encoded by the ''HFE'' gene. The ''HFE'' gene is located on short arm of chromosome 6 at location 6p22.2
Function
The protein ...
. But at each gene locus associated with the disease, there is the possibility of compound heterozygosity, often caused by inheritance of two unrelated alleles, of which one is a common or classic mutation, while the other is a rare or even novel one.
For some genetic diseases, environmental cofactors are an important determinant of variation and outcome. In the case of hemochromatosis,
penetrance
Penetrance in genetics is the proportion of individuals carrying a particular variant (or allele) of a gene (the genotype) that also express an associated trait (the phenotype). In medical genetics, the penetrance of a disease-causing mutation is ...
is incomplete, even for the classic HFE mutation, and is affected by gender, diet, and behaviors such as alcohol consumption. Compound heterozygotes are often observed only through subclinical symptoms such as excess iron. Disease is rarely observed in such compound heterozygotes unless other causal factors (such as
alcoholism
Alcoholism is, broadly, any drinking of alcohol that results in significant mental or physical health problems. Because there is disagreement on the definition of the word ''alcoholism'', it is not a recognized diagnostic entity. Predomina ...
) are present. As a result, compound heterozygosity for hemochromatosis may be more common than diagnosis based on pathology would suggest.
Some genetic diseases are named more precisely, and represent a
single point of failure
A single point of failure (SPOF) is a part of a system that, if it fails, will stop the entire system from working. SPOFs are undesirable in any system with a goal of high availability or reliability, be it a business practice, software appl ...
on a metabolic pathway. For example,
Tay–Sachs disease,
GM2-gangliosidosis, AB variant, and
Sandhoff disease might easily have been defined together as a single disease, because the three disorders are associated with failure of the same enzyme and have the same outcome. However, the three were discovered and named separately, and each represents a distinct molecular point of failure in a subunit that is required for activation of the enzyme. For all three disorders, compound heterozygosity is responsible for variant forms. For example, both TSD and Sandhoff disease have a more common infantile form and several late-onset variants. Post-infantile forms, which are rare, are generally caused by the inheritance of two unrelated alleles, of which one is usually a classic mutation, while the other is a rare or even novel one.
Examples
*
Phenylketonuria
Phenylketonuria (PKU) is an inborn error of metabolism that results in decreased metabolism of the amino acid phenylalanine. Untreated PKU can lead to intellectual disability, seizures, behavioral problems, and mental disorders. It may also r ...
. Because phenylketonuria was the first genetic disorder for which mass post-natal genetic screening was available, beginning in the early 1960s, atypical cases were detected almost immediately. Molecular analysis of the genome was not yet possible, but protein sequencing revealed cases caused by compound heterozygosity. As molecular genomic techniques became available in the 1980s and 1990s, it became possible to explain a range of disorders in heterozygotes carrying one copy of one of the classic mutations for phenylketonuria.
*
Tay–Sachs disease. In addition to its classic infantile form, Tay Sachs disease may present in juvenile or adult onset forms, often as the result of compound heterozygosity between two alleles, one that causes the classic infantile disease in homozygotes and another that allows some residual HEXA enzyme activity.
*
Sickle cell syndromes. A variety of sickle cell disorders result from inheritance of the sickle cell gene in a compound heterozygous manner with other mutant beta globin genes. These disorders include
sickle cell-beta thalassemia. In the case of
sickle cell anemia
Sickle cell disease (SCD) is a group of blood disorders typically inherited from a person's parents. The most common type is known as sickle cell anaemia. It results in an abnormality in the oxygen-carrying protein haemoglobin found in red b ...
, an individual with one allele for
hemoglobin
Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocyte ...
S and one
allele
An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution.
::"The chro ...
for
hemoglobin C would still develop the disease, despite being heterozygous for both genes.
References
{{DEFAULTSORT:Compound Heterozygosity
Genetics
Autosomal recessive disorders