
Commutative algebra, first known as
ideal theory
In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings (and this article therefore only cons ...
, is the branch of
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
that studies
commutative rings, their
ideals
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considered ...
, and
modules
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
over such rings. Both
algebraic geometry and
algebraic number theory build on commutative algebra. Prominent examples of commutative rings include
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
s; rings of
algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficien ...
s, including the ordinary
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s
; and
''p''-adic integers.
Commutative algebra is the main technical tool in the local study of
schemes.
The study of rings that are not necessarily commutative is known as
noncommutative algebra
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a ...
; it includes
ring theory
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...
,
representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
, and the theory of
Banach algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach ...
s.
Overview
Commutative algebra is essentially the study of the rings occurring in
algebraic number theory and
algebraic geometry.
In algebraic number theory, the rings of
algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficien ...
s are
Dedekind ring
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessaril ...
s, which constitute therefore an important class of commutative rings. Considerations related to
modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his bo ...
have led to the notion of a
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''.
Given a field ''F'', if ''D'' is a subring of ''F'' such ...
. The restriction of
algebraic field extension
In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field e ...
s to subrings has led to the notions of
integral extension In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that
:b^n + a_ b^ + \cdots + a_1 b + a_0 = 0.
That is to say, ''b'' ...
s and
integrally closed domain
In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' which is a root ...
s as well as the notion of
ramification of an extension of valuation rings.
The notion of
localization of a ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractio ...
(in particular the localization with respect to a
prime ideal, the localization consisting in inverting a single element and the
total quotient ring
In abstract algebra, the total quotient ring, or total ring of fractions, is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings ''R'' that may have zero divisors. The construction embeds ...
) is one of the main differences between commutative algebra and the theory of non-commutative rings. It leads to an important class of commutative rings, the
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic ...
s that have only one
maximal ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
. The set of the prime ideals of a commutative ring is naturally equipped with a
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, the
Zariski topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is ...
. All these notions are widely used in algebraic geometry and are the basic technical tools for the definition of
scheme theory
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different s ...
, a generalization of algebraic geometry introduced by
Grothendieck.
Many other notions of commutative algebra are counterparts of geometrical notions occurring in algebraic geometry. This is the case of
Krull dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generall ...
,
primary decomposition
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many '' primary ideals'' (which are rela ...
,
regular ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal i ...
s,
Cohen–Macaulay ring
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a fini ...
s,
Gorenstein ring In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring ''R'' with finite injective dimension as an ''R''-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring ...
s and many other notions.
History
The subject, first known as
ideal theory
In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings (and this article therefore only cons ...
, began with
Richard Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...
's work on
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
s, itself based on the earlier work of
Ernst Kummer
Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of ...
and
Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers ...
. Later,
David Hilbert introduced the term ''ring'' to generalize the earlier term ''number ring''. Hilbert introduced a more abstract approach to replace the more concrete and computationally oriented methods grounded in such things as
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebra ...
and classical
invariant theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
. In turn, Hilbert strongly influenced
Emmy Noether
Amalie Emmy Noether Emmy is the ''Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
, who recast many earlier results in terms of an
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These ...
, now known as the Noetherian condition. Another important milestone was the work of Hilbert's student
Emanuel Lasker
Emanuel Lasker (; December 24, 1868 – January 11, 1941) was a German chess player, mathematician, and philosopher who was World Chess Champion for 27 years, from 1894 to 1921, the longest reign of any officially recognised World Chess Champ ...
, who introduced
primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. ...
s and proved the first version of the
Lasker–Noether theorem
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many '' primary ideals'' (which are relat ...
.
The main figure responsible for the birth of commutative algebra as a mature subject was
Wolfgang Krull
Wolfgang Krull (26 August 1899 – 12 April 1971) was a German mathematician who made fundamental contributions to commutative algebra, introducing concepts that are now central to the subject.
Krull was born and went to school in Baden-Baden. H ...
, who introduced the fundamental notions of
localization
Localization or localisation may refer to:
Biology
* Localization of function, locating psychological functions in the brain or nervous system; see Linguistic intelligence
* Localization of sensation, ability to tell what part of the body is af ...
and
completion of a ring, as well as that of
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal id ...
s. He established the concept of the
Krull dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generall ...
of a ring, first for
Noetherian rings before moving on to expand his theory to cover general
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''.
Given a field ''F'', if ''D'' is a subring of ''F'' such ...
s and
Krull ring In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which ...
s. To this day,
Krull's principal ideal theorem
In commutative algebra, Krull's principal ideal theorem, named after Wolfgang Krull (1899–1971), gives a bound on the height of a principal ideal in a commutative Noetherian ring. The theorem is sometimes referred to by its German name, '' ...
is widely considered the single most important foundational theorem in commutative algebra. These results paved the way for the introduction of commutative algebra into algebraic geometry, an idea which would revolutionize the latter subject.
Much of the modern development of commutative algebra emphasizes
modules
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
. Both ideals of a ring ''R'' and ''R''-algebras are special cases of ''R''-modules, so module theory encompasses both ideal theory and the theory of
ring extensions. Though it was already incipient in
Kronecker's work, the modern approach to commutative algebra using module theory is usually credited to
Krull and
Noether Noether is the family name of several mathematicians (particularly, the Noether family), and the name given to some of their mathematical contributions:
* Max Noether (1844–1921), father of Emmy and Fritz Noether, and discoverer of:
** Noether ...
.
Main tools and results
Noetherian rings
In
mathematics, more specifically in the area of
modern algebra known as
ring theory
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...
, a Noetherian ring, named after
Emmy Noether
Amalie Emmy Noether Emmy is the ''Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
, is a ring in which every non-empty set of
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
s has a maximal element. Equivalently, a ring is Noetherian if it satisfies the
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These ...
on ideals; that is, given any chain:
:
there exists an ''n'' such that:
:
For a commutative ring to be Noetherian it suffices that every prime ideal of the ring is finitely generated. (The result is due to
I. S. Cohen
Irvin Sol Cohen (1917 – February 14, 1955) was an American mathematician at the Massachusetts Institute of Technology who worked on local rings. He was a student of Oscar Zariski at Johns Hopkins University.
In his thesis he proved the Cohen ...
.)
The notion of a Noetherian ring is of fundamental importance in both commutative and noncommutative ring theory, due to the role it plays in simplifying the ideal structure of a ring. For instance, the ring of
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s and the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
over a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
are both Noetherian rings, and consequently, such theorems as the
Lasker–Noether theorem
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many '' primary ideals'' (which are relat ...
, the
Krull intersection theorem In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic ...
, and the
Hilbert's basis theorem hold for them. Furthermore, if a ring is Noetherian, then it satisfies the
descending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These ...
on ''
prime ideals''. This property suggests a deep theory of dimension for Noetherian rings beginning with the notion of the
Krull dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generall ...
.
Hilbert's basis theorem
Hilbert's basis theorem has some immediate corollaries:
#By induction we see that