Cohomology Operation
   HOME

TheInfoList



OR:

In mathematics, the cohomology operation concept became central to
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, particularly
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, from the 1950s onwards, in the shape of the simple definition that if ''F'' is a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
defining a
cohomology theory In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
, then a cohomology operation should be a
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
from ''F'' to itself. Throughout there have been two basic points: #the operations can be studied by combinatorial means; and #the effect of the operations is to yield an interesting
bicommutant In algebra, the bicommutant of a subset ''S'' of a semigroup (such as an algebra or a group) is the commutant of the commutant of that subset. It is also known as the double commutant or second commutant and is written S^. The bicommutant is part ...
theory. The origin of these studies was the work of Pontryagin, Postnikov, and Norman Steenrod, who first defined the Pontryagin square, Postnikov square, and Steenrod square operations for
singular cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
, in the case of mod 2 coefficients. The combinatorial aspect there arises as a formulation of the failure of a natural diagonal map, at
cochain In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is contained in the kernel o ...
level. The general theory of the Steenrod algebra of operations has been brought into close relation with that of the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
. In the
Adams spectral sequence In mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now c ...
the ''bicommutant'' aspect is implicit in the use of
Ext functor In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic stru ...
s, the
derived functor In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in vari ...
s of Hom-functors; if there is a bicommutant aspect, taken over the Steenrod algebra acting, it is only at a ''derived'' level. The convergence is to groups in
stable homotopy theory In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the ...
, about which information is hard to come by. This connection established the deep interest of the cohomology operations for
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, and has been a research topic ever since. An
extraordinary cohomology theory In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
has its own cohomology operations, and these may exhibit a richer set on constraints.


Formal definition

A cohomology operation \theta of type :(n,q,\pi,G)\, is a
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
of functors :\theta:H^(-,\pi)\to H^(-,G)\, defined on
CW complex In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generali ...
es.


Relation to Eilenberg–MacLane spaces

Cohomology of CW complexes is representable by an
Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. ...
, so by the
Yoneda lemma In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a ...
a cohomology operation of type (n,q,\pi,G) is given by a
homotopy In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. ...
class of maps K(\pi,n) \to K(G,q). Using representability once again, the cohomology operation is given by an element of H^(K(\pi,n),G). Symbolically, letting ,B/math> denote the set of homotopy classes of maps from A to B, ::\begin\displaystyle\mathrm(H^n(-,\pi),H^q(-,G)) &= \mathrm( ,K(\pi,n) ,K(G,q)\\ &= (\pi,n),K(G,q)\ &= H^q(K(\pi,n);G).\end


See also

* Secondary cohomology operation


References

* * {{DEFAULTSORT:Cohomology Operation Algebraic topology