In
mathematics, a cocountable
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of a set ''X'' is a subset ''Y'' whose
complement
A complement is something that completes something else.
Complement may refer specifically to:
The arts
* Complement (music), an interval that, when added to another, spans an octave
** Aggregate complementation, the separation of pitch-clas ...
in ''X'' is a
countable set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural number ...
. In other words, ''Y'' contains all but countably many elements of ''X''. Since the rational numbers are a countable subset of the reals, for example, the irrational numbers are a cocountable subset of the reals. If the complement is finite, then one says ''Y'' is
cofinite
In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is countable, then one says the set is cocou ...
.
σ-algebras
The set of all subsets of ''X'' that are either countable or cocountable forms a
σ-algebra
In mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set ''X'' is a collection Σ of subsets of ''X'' that includes the empty subset, is closed under complement, and is closed under countable unions and countabl ...
, i.e., it is closed under the operations of countable unions, countable intersections, and complementation. This σ-algebra is the countable-cocountable algebra on ''X''. It is the smallest σ-algebra containing every
singleton set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0.
Properties
Within the framework of Zermelo–Fraenkel set theory, t ...
.
Topology
The
cocountable topology The cocountable topology or countable complement topology on any set ''X'' consists of the empty set and all cocountable subsets of ''X'', that is all sets whose complement in ''X'' is countable. It follows that the only closed subsets are ''X'' an ...
(also called the "countable complement topology") on any set ''X'' consists of the
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in oth ...
and all cocountable subsets of ''X''.
Basic concepts in infinite set theory
{{settheory-stub