In the
mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
fields of
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
and
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a coarse structure on a
set ''X'' is a collection of
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
s of the
cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ ...
''X'' × ''X'' with certain properties which allow the ''large-scale structure'' of
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
s and
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s to be defined.
The concern of traditional geometry and topology is with the small-scale structure of the space: properties such as the
continuity of a
function depend on whether the
inverse image
In mathematics, the image of a function is the set of all output values it may produce.
More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through ...
s of small
open set
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that a ...
s, or
neighborhoods
A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural ar ...
, are themselves open. Large-scale properties of a space—such as
boundedness, or the
degrees of freedom
Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
of the space—do not depend on such features. ''Coarse geometry'' and ''coarse topology'' provide tools for measuring the large-scale properties of a space, and just as a
metric
Metric or metrical may refer to:
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
In mathem ...
or a
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
contains information on the small-scale structure of a space, a coarse structure contains information on its large-scale properties.
Properly, a coarse structure is not the large-scale analog of a topological structure, but of a
uniform structure.
Definition
A on a
set is a collection
of
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
s of
(therefore falling under the more general categorization of
binary relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
s on
) called , and so that
possesses the
identity relation
In mathematics, a homogeneous relation (also called endorelation) over a set ''X'' is a binary relation over ''X'' and itself, i.e. it is a subset of the Cartesian product . This is commonly phrased as "a relation on ''X''" or "a (binary) relation ...
, is closed under taking subsets, inverses, and finite unions, and is closed under
composition of relations. Explicitly:
# Identity/diagonal:
#: The
diagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Gree ...
is a member of
—the identity relation.
# Closed under taking subsets:
#: If
and
then
# Closed under taking inverses:
#: If
then the inverse (or transpose)
is a member of
—the inverse relation.
# Closed under taking unions:
#: If
then their
union is a member of
# Closed under composition:
#: If
then their product
is a member of
—the
composition of relations.
A set
endowed with a coarse structure
is a .
For a subset
of
the set