CoASH
   HOME

TheInfoList



OR:

Coenzyme A (CoA, SHCoA, CoASH) is a
coenzyme A cofactor is a non-protein chemical compound or Metal ions in aqueous solution, metallic ion that is required for an enzyme's role as a catalysis, catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can ...
, notable for its role in the
synthesis Synthesis or synthesize may refer to: Science Chemistry and biochemistry *Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors **Organic synthesis, the chemical synthesis of organi ...
and
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
of
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s, and the oxidation of
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic ...
in the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
. All
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
s sequenced to date encode enzymes that use coenzyme A as a
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (aquatic environment), the earthy material that exi ...
, and around 4% of cellular enzymes use it (or a
thioester In organic chemistry, thioesters are organosulfur compounds with the molecular structure . They are analogous to carboxylate esters () with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix ...
) as a substrate. In humans, CoA biosynthesis requires
cysteine Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
,
pantothenate Pantothenic acid (vitamin B5) is a B vitamin and an essential nutrient. All animals need pantothenic acid in order to synthesize coenzyme A (CoA), which is essential for cellular energy production and for the synthesis and degradation of prote ...
(vitamin B5), and
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP). In its acetyl form, coenzyme A is a highly versatile molecule, serving metabolic functions in both the
anabolic Anabolism () is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catab ...
and
catabolic Catabolism () is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. Catabolism breaks down large molecules (such as polysaccharides, lipi ...
pathways. Acetyl-CoA is utilised in the
post-translational regulation Post-translational regulation refers to the control of the levels of active protein. There are several forms. It is performed either by means of reversible events ( posttranslational modifications, such as phosphorylation In biochemistry, p ...
and
allosteric regulation In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the ...
of
pyruvate dehydrogenase Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate. Pyruvate dehydrogenase is ...
and carboxylase to maintain and support the partition of
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic ...
synthesis and degradation.


Discovery of structure

Coenzyme A was identified by
Fritz Lipmann Fritz Albert Lipmann (; June 12, 1899 – July 24, 1986) was a German-American biochemist and a co-discoverer in 1945 of coenzyme A. For this, together with other research on coenzyme A, he was awarded the Nobel Prize in Physiology or Medicine in ...
in 1946, who also later gave it its name. Its structure was determined during the early 1950s at the
Lister Institute The Lister Institute of Preventive Medicine, informally known as the Lister Institute, was established as a research institute (the British Institute of Preventive Medicine) in 1891, with bacteriologist Marc Armand Ruffer as its first director, ...
, London, together by Lipmann and other workers at
Harvard Medical School Harvard Medical School (HMS) is the medical school of Harvard University and is located in the Longwood Medical and Academic Area, Longwood Medical Area in Boston, Massachusetts. Founded in 1782, HMS is the third oldest medical school in the Un ...
and
Massachusetts General Hospital Massachusetts General Hospital (Mass General or MGH) is a teaching hospital located in the West End neighborhood of Boston, Massachusetts. It is the original and largest clinical education and research facility of Harvard Medical School/Harvar ...
. Lipmann initially intended to study acetyl transfer in animals, and from these experiments he noticed a unique factor that was not present in enzyme extracts but was evident in all organs of the animals. He was able to isolate and purify the factor from pig liver and discovered that its function was related to a coenzyme that was active in
choline Choline is a cation with the chemical formula . Choline forms various Salt (chemistry), salts, such as choline chloride and choline bitartrate. An essential nutrient for animals, it is a structural component of phospholipids and cell membrane ...
acetylation. Work with
Beverly Guirard Beverly Marie Guirard was a microbiologist who worked on the biochemistry of microbial growth, especially with respect to vitamin B6. She is also known for her work defining the components of coenzyme A which was a part of the research that led to ...
,
Nathan Kaplan "Kid Dropper" Nathan Caplin or Kaplan (August 3, 1891 – August 28, 1923), also known as Jack the Dropper, was an American gangster who controlled labor racketeering and extortion in New York City during the post-World War I period into the ear ...
, and others determined that pantothenic acid was a central component of coenzyme A. The coenzyme was named coenzyme A to stand for "activation of acetate". In 1953,
Fritz Lipmann Fritz Albert Lipmann (; June 12, 1899 – July 24, 1986) was a German-American biochemist and a co-discoverer in 1945 of coenzyme A. For this, together with other research on coenzyme A, he was awarded the Nobel Prize in Physiology or Medicine in ...
won the Nobel Prize in Physiology or Medicine "for his discovery of co-enzyme A and its importance for intermediary metabolism".


Biosynthesis

Coenzyme A is naturally synthesized from
pantothenate Pantothenic acid (vitamin B5) is a B vitamin and an essential nutrient. All animals need pantothenic acid in order to synthesize coenzyme A (CoA), which is essential for cellular energy production and for the synthesis and degradation of prote ...
(vitamin B5), which is found in food such as meat, vegetables, cereal grains, legumes, eggs, and milk. In humans and most living organisms, pantothenate is an essential vitamin that has a variety of functions. In some plants and bacteria, including ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'', pantothenate can be synthesised ''de novo'' and is therefore not considered essential. These bacteria synthesize pantothenate from the amino acid aspartate and a metabolite in valine biosynthesis. In all living organisms, coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine (see figure): #
Pantothenate Pantothenic acid (vitamin B5) is a B vitamin and an essential nutrient. All animals need pantothenic acid in order to synthesize coenzyme A (CoA), which is essential for cellular energy production and for the synthesis and degradation of prote ...
(vitamin B5) is phosphorylated to 4′-phosphopantothenate by the enzyme
pantothenate kinase Pantothenate kinase (, PanK; CoaA) is the first enzyme in the Coenzyme A (CoA) biosynthetic pathway. It phosphorylates pantothenate (vitamin B5) to form 4'-phosphopantothenate at the expense of a molecule of adenosine triphosphate (Adenosine trip ...
(PanK; CoaA; CoaX). This is the committed step in CoA biosynthesis and requires ATP. # A
cysteine Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
is added to 4′-phosphopantothenate by the enzyme phosphopantothenoylcysteine synthetase (PPCS; CoaB) to form 4'-phospho-N-pantothenoylcysteine (PPC). This step is coupled with ATP hydrolysis. # PPC is decarboxylated to 4′-phosphopantetheine by phosphopantothenoylcysteine decarboxylase (PPC-DC; CoaC) # 4′-phosphopantetheine is adenylated (or more properly, AMPylated) to form dephospho-CoA by the enzyme phosphopantetheine adenylyl transferase (COASY; PPAT; CoaD) # Finally, dephospho-CoA is phosphorylated to coenzyme A by the enzyme dephosphocoenzyme A kinase (COASY, DPCK; CoaE). This final step requires ATP. Enzyme nomenclature abbreviations in parentheses represent mammalian, other eukaryotic, and prokaryotic enzymes respectively. In mammals steps 4 and 5 are catalyzed by a bifunctional enzyme called COASY. This pathway is regulated by product inhibition. CoA is a competitive inhibitor for Pantothenate Kinase, which normally binds ATP. Coenzyme A, three ADP, one monophosphate, and one diphosphate are harvested from biosynthesis. Coenzyme A can be synthesized through alternate routes when intracellular coenzyme A level are reduced and the ''de novo'' pathway is impaired. In these pathways, coenzyme A needs to be provided from an external source, such as food, in order to produce 4′-phosphopantetheine. Ectonucleotide pyrophosphates (ENPP) degrade coenzyme A to 4′-phosphopantetheine, a stable molecule in organisms. Acyl carrier proteins (ACP) (such as ACP synthase and ACP degradation) are also used to produce 4′-phosphopantetheine. This pathway allows for 4′-phosphopantetheine to be replenished in the cell and allows for the conversion to coenzyme A through enzymes, PPAT and PPCK. A 2024 article detailed a plausible chemical synthesis mechanism for the pantetheine component (the main functional part) of coenzyme A in a primordial prebiotic world.


Commercial production

Coenzyme A is produced commercially via extraction from yeast, however this is an inefficient process (yields approximately 25 mg/kg) resulting in an expensive product. Various ways of producing CoA synthetically, or semi-synthetically have been investigated, although none are currently operating at an industrial scale.


Function


Fatty acid synthesis

Since coenzyme A is, in chemical terms, a
thiol In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
, it can react with
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
s to form
thioester In organic chemistry, thioesters are organosulfur compounds with the molecular structure . They are analogous to carboxylate esters () with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix ...
s, thus functioning as an
acyl In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group () or hydrogen in the case of formyl grou ...
group carrier. It assists in transferring
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s from the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
to
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
. A molecule of coenzyme A carrying an
acyl group In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group () or hydrogen in the case of formyl group ( ...
is also referred to as ''
acyl-CoA Acyl-CoA is a group of coenzyme A, CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several e ...
''. When it is not attached to an acyl group, it is usually referred to as 'CoASH' or 'HSCoA'. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Coenzyme A is also the source of the
phosphopantetheine Phosphopantetheine, also known as 4'-phosphopantetheine, is a prosthetic group of several acyl carrier proteins including the acyl carrier proteins (ACP) of fatty acid synthases, ACPs of polyketide synthases, the peptidyl carrier proteins (PCP), as ...
group that is added as a
prosthetic group A prosthetic group is the non-amino acid component that is part of the structure of the heteroproteins or conjugated proteins, being tightly linked to the apoprotein. Not to be confused with the cosubstrate that binds to the enzyme apoenzyme (e ...
to proteins such as
acyl carrier protein The acyl carrier protein (ACP) is a cofactor of both fatty acid and polyketide biosynthesis machinery. It is one of the most abundant proteins in cells of ''E. coli.'' In both cases, the growing chain is bound to the ACP via a thioester derived fr ...
and formyltetrahydrofolate dehydrogenase.


Energy production

Coenzyme A is one of five crucial coenzymes that are necessary in the reaction mechanism of the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
. Its acetyl-coenzyme A form is the primary input in the citric acid cycle and is obtained from
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
, amino acid metabolism, and fatty acid beta oxidation. This process is the body's primary
catabolic pathway Catabolism () is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. Catabolism breaks down large molecules (such as polysaccharides, lipid ...
and is essential in breaking down the building blocks of the cell such as
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s, and
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s.


Regulation

When there is excess glucose, coenzyme A is used in the cytosol for synthesis of fatty acids. This process is implemented by regulation of
acetyl-CoA carboxylase Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme () that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC ...
, which catalyzes the committed step in fatty acid synthesis.
Insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
stimulates acetyl-CoA carboxylase, while
epinephrine Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands a ...
and
glucagon Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a Glucagon (medic ...
inhibit its activity. During cell starvation, coenzyme A is synthesized and transports fatty acids in the cytosol to the mitochondria. Here, acetyl-CoA is generated for oxidation and energy production. In the citric acid cycle, coenzyme A works as an allosteric regulator in the stimulation of the enzyme
pyruvate dehydrogenase Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate. Pyruvate dehydrogenase is ...
.


Antioxidant function and regulation

Discovery of the novel antioxidant function of coenzyme A highlights its protective role during cellular stress. Mammalian and bacterial cells subjected to oxidative and metabolic stress show significant increase in the covalent modification of protein cysteine residues by coenzyme A. This reversible modification is termed protein CoAlation (Protein-S-SCoA), which plays a similar role to protein ''S''-glutathionylation by preventing the irreversible oxidation of the
thiol group In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
of cysteine residues. Using anti-coenzyme A antibody and liquid chromatography tandem mass spectrometry ( LC-MS/MS) methodologies, more than 2,000 CoAlated proteins were identified from stressed mammalian and bacterial cells. The majority of these proteins are involved in cellular metabolism and stress response. Different research studies have focused on deciphering the coenzyme A-mediated regulation of proteins. Upon protein CoAlation, inhibition of the catalytic activity of different proteins (e.g., metastasis suppressor
NME1 Nucleoside diphosphate kinase A is an enzyme that in humans is encoded by the ''NME1'' gene. It is thought to be a metastasis suppressor. Function This gene (NME1) was identified because of its reduced mRNA transcript levels in highly metast ...
, peroxiredoxin 5,
GAPDH Glyceraldehyde 3-phosphate dehydrogenase (abbreviated GAPDH) () is an enzyme of about 37kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. In addition to this long establish ...
, among others) is reported. To restore the protein's activity, antioxidant enzymes that reduce the disulfide bond between coenzyme A and the protein cysteine residue play an important role. This process is termed protein deCoAlation. Thioredoxin A and Thioredoxin-like protein (YtpP), two bacterial proteins, are shown to deCoAlate proteins.


Use in biological research

Coenzyme A is available from various chemical suppliers as the free acid and
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
or
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
salts. The free acid of coenzyme A is detectably unstable, with around 5% degradation observed after 6 months when stored at −20 °C, and near complete degradation after 1 month at 37 °C. The lithium and sodium salts of CoA are more stable, with negligible degradation noted over several months at various temperatures. Aqueous solutions of coenzyme A are unstable above pH 8, with 31% of activity lost after 24 hours at 25 °C and pH 8. CoA stock solutions are relatively stable when frozen at pH 2–6. The major route of CoA activity loss is likely the air oxidation of CoA to CoA disulfides. CoA mixed disulfides, such as CoA-''S''–''S''-glutathione, are commonly noted contaminants in commercial preparations of CoA. Free CoA can be regenerated from CoA disulfide and mixed CoA disulfides with reducing agents such as
dithiothreitol Dithiothreitol (DTT) is an organosulfur compound with the formula . A colorless compound, it is classified as a dithiol and a diol. DTT is redox reagent also known as Cleland's reagent, after W. Wallace Cleland. The reagent is commonly used in ...
or
2-mercaptoethanol 2-Mercaptoethanol (also β-mercaptoethanol, BME, 2BME, 2-ME or β-met) is the chemical compound with the chemical formula, formula HOCH2CH2SH. ME or βME, as it is commonly abbreviated, is used to reduce disulfide bonds and can act as a biological ...
.


Non-exhaustive list of coenzyme A-activated acyl groups

*
Acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
*
fatty acyl-CoA Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho- AMP linked to phosphorylated pantothenic acid (vitamin B5) and cysteamine. Long-chain acyl-CoA esters are substrates for a number of important enzymatic r ...
(activated form of all fatty acids; only the CoA esters are substrates for important reactions such as mono-, di-, and triacylglycerol synthesis, carnitine palmitoyl transferase, and
cholesterol Cholesterol is the principal sterol of all higher animals, distributed in body Tissue (biology), tissues, especially the brain and spinal cord, and in Animal fat, animal fats and oils. Cholesterol is biosynthesis, biosynthesized by all anima ...
esterification In chemistry, an ester is a compound derived from an acid (either organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group () of that acid is replaced by an organyl group (R). These compounds contain a distin ...
) **
Propionyl-CoA Propionyl-CoA is a coenzyme A derivative of propionic acid. It is composed of a 24 total carbon chain (without the coenzyme, it is a 3 carbon structure) and its production and metabolic fate depend on which organism it is present in. Several diffe ...
**
Butyryl-CoA Butyryl-CoA (or butyryl-coenzyme A, butanoyl-CoA) is an organic coenzyme A-containing derivative of butyric acid. It is a natural product found in many biological pathways, such as fatty acid metabolism ( degradation and elongation), fermentatio ...
**Myristoyl-CoA **
Crotonyl-CoA Crotonyl-coenzyme A is an intermediate in the fermentation of butyric acid, and in the metabolism of lysine and tryptophan. It is important in the metabolism of fatty acids and amino acids Amino acids are organic compounds that contain both ...
*
Acetoacetyl-CoA Acetoacetyl CoA is the precursor of HMG-CoA in the mevalonate pathway, which is essential for cholesterol biosynthesis. It also takes a similar role in the ketone bodies synthesis ( ketogenesis) pathway of the liver. In the ketone bodies digestion ...
*
Coumaroyl-CoA Coumaroyl-coenzyme A is the thioester of coenzyme-A and coumaric acid. Coumaroyl-coenzyme A is a central intermediate in the biosynthesis of myriad natural products found in plants. These products include lignols (precursors to lignin and ligno ...
(used in
flavonoid Flavonoids (or bioflavonoids; from the Latin word ''flavus'', meaning yellow, their color in nature) are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans. Chemically, flavonoids ...
and
stilbenoid Stilbenoids are hydroxylated derivatives of stilbene. They have a C6–C2–C6 structure. In biochemical terms, they belong to the family of phenylpropanoids and share most of their biosynthesis pathway with Chalconoid, chalcones. Most stilbenoids ...
biosynthesis) *
Benzoyl-CoA Benzoyl-CoA is the thioester derived from benzoic acid and coenzyme A. The term benzoyl-CoA also include diverse conjugates of coenzyme A and aromatic carboxylic acids. Benzoate, vanillin, anthranilic acid, 4-ethylphenol, p-cresol, phenol, an ...
*
Phenylacetyl-CoA Phenylacetyl-CoA (C29H42N7O17P3S) is a form of acetyl-CoA formed from the condensation of the thiol group from coenzyme A with the carboxyl group of phenylacetic acid. Its molecular-weight is 885.7 g/mol. and IUPAC name is ''S''- - -(2''R'')- ...
* Acyl derived from dicarboxylic acids **Malonyl-CoA">dicarboxylic acid">-(2''R'')- ...
* Acyl derived from dicarboxylic acids **Malonyl-CoA (important in chain elongation in fatty acid biosynthesis and polyketide biosynthesis) **Succinyl-CoA (used in heme biosynthesis) **Hydroxymethylglutaryl-CoA (used in isoprenoid biosynthesis) **pimelate, Pimelyl-CoA (used in biotin biosynthesis)


References


Bibliography

* {{Enzyme cofactors Coenzymes Metabolism Thiols