Summary
Clinical trials testing potential medical products are commonly classified into four phases. The drug development process will normally proceed through all four phases over many years. If the drug successfully passes through Phases I, II, and III, it will usually be approved by the national regulatory authority for use in the general population. Phase IV trials are 'post-marketing' or 'surveillance' studies conducted to monitor safety over several years.Preclinical studies
Before clinical trials are undertaken for a candidate drug, vaccine, medical device, or diagnostic assay, the product candidate is tested extensively in preclinical studies. Such studies involve '' in vitro'' ( test tube orPhase 0
Phase 0 is a recent designation for optional exploratory trials conducted in accordance with the United States Food and Drug Administration's (FDA) 2006 Guidance on Exploratory Investigational New Drug (IND) Studies. Phase 0 trials are also known as human microdosing studies and are designed to speed up the development of promising drugs or imaging agents by establishing very early on whether the drug or agent behaves in human subjects as was expected from preclinical studies. Distinctive features of Phase 0 trials include the administration of single subtherapeutic doses of the study drug to a small number of subjects (10 to 15) to gather preliminary data on the agent'sPhase I
Phase I trials were formerly referred to as "first-in-man studies" but the field generally moved to the gender-neutral language phrase "first-in-humans" in the 1990s; these trials are the first stage of testing in human subjects. They are designed to test the safety, side effects, best dose, and formulation method for the drug. Phase I trials are not randomized, and thus are vulnerable toPhase II
Once a dose or range of doses is determined, the next goal is to evaluate whether the drug has anyTrial design
Some Phase II trials are designed as case series, demonstrating a drug's safety and activity in a selected group of participants. Other Phase II trials are designed as randomized controlled trials, where some patients receive the drug/device and others receive placebo/standard treatment. Randomized Phase II trials have far fewer patients than randomized Phase III trials.Example: cancer design
In the first stage, the investigator attempts to rule out drugs that have no or little biologic activity. For example, the researcher may specify that a drug must have some minimal level of activity, say, in 20% of participants. If the estimated activity level is less than 20%, the researcher chooses not to consider this drug further, at least not at that maximally tolerated dose. If the estimated activity level exceeds 20%, the researcher will add more participants to get a better estimate of the response rate. A typical study for ruling out a 20% or lower response rate enters 14 participants. If no response is observed in the first 14 participants, the drug is considered not likely to have a 20% or higher activity level. The number of additional participants added depends on the degree of precision desired, but ranges from 10 to 20. Thus, a typical cancer phase II study might include fewer than 30 people to estimate the response rate.Efficacy vs effectiveness
When a study assesses efficacy, it is looking at whether the drug given in the specific manner described in the study is able to influence an outcome of interest (e.g. tumor size) in the chosen population (e.g. cancer patients with no other ongoing diseases). When a study is assessing effectiveness, it is determining whether a treatment will influence the disease. In an effectiveness study, it is essential that participants are treated as they would be when the treatment is prescribed in actual practice. That would mean that there should be no aspects of the study designed to increase compliance above those that would occur in routine clinical practice. The outcomes in effectiveness studies are also more generally applicable than in most efficacy studies (for example does the patient feel better, come to the hospital less or live longer in effectiveness studies as opposed to better test scores or lower cell counts in efficacy studies). There is usually less rigid control of the type of participant to be included in effectiveness studies than in efficacy studies, as the researchers are interested in whether the drug will have a broad effect in the population of patients with the disease.Success rate
Phase II clinical programs historically have experienced the lowest success rate of the four development phases. In 2010, the percentage of Phase II trials that proceeded to Phase III was 18%, and only 31% of developmental candidates advanced from Phase II to Phase III, in a large study of trials conducted over 2006–2015.Phase III
This phase is designed to assess the effectiveness of the new intervention and, thereby, its value in clinical practice. Phase III studies are randomized controlled multicenter trials on large patient groups (300–3,000 or more depending upon the disease/medical condition studied) and are aimed at being the definitive assessment of how effective the drug is, in comparison with current 'gold standard' treatment. Because of their size and comparatively long duration, Phase III trials are the most expensive, time-consuming and difficult trials to design and run, especially in therapies for chronic medical conditions. Phase III trials of chronic conditions or diseases often have a short follow-up period for evaluation, relative to the period of time the intervention might be used in practice. This is sometimes called the "pre-marketing phase" because it actually measures consumer response to the drug. It is common practice that certain Phase III trials will continue while the regulatory submission is pending at the appropriate regulatory agency. This allows patients to continue to receive possibly lifesaving drugs until the drug can be obtained by purchase. Other reasons for performing trials at this stage include attempts by the sponsor at "label expansion" (to show the drug works for additional types of patients/diseases beyond the original use for which the drug was approved for marketing), to obtain additional safety data, or to support marketing claims for the drug. Studies in this phase are by some companies categorized as "Phase IIIB studies." While not required in all cases, it is typically expected that there be at least two successful Phase III trials, demonstrating a drug's safety and efficacy, in order to obtain approval from the appropriate regulatory agencies such as FDA (US), or the EMA (European Union). Once a drug has proved satisfactory after Phase III trials, the trial results are usually combined into a large document containing a comprehensive description of the methods and results of human and animal studies, manufacturing procedures, formulation details, and shelf life. This collection of information makes up the "regulatory submission" that is provided for review to the appropriate regulatory authoritiesThe regulatory authority in the US is the Food and Drug Administration; in Canada,Adaptive design
The design of individual trials may be altered during a trial – usually during Phase II or III – to accommodate interim results for the benefit of the treatment, adjust statistical analysis, or to reach early termination of an unsuccessful design, a process called an "adaptive design". Examples are the 2020 World Health Organization '' Solidarity Trial'', European ''Discovery trial'', and UK '' RECOVERY Trial'' of hospitalized people with severe COVID-19 infection, each of which applies adaptive designs to rapidly alter trial parameters as results from the experimental therapeutic strategies emerge. Adaptive designs within ongoing Phase II–III clinical trials on candidate therapeutics may shorten trial durations and use fewer subjects, possibly expediting decisions for early termination or success, and coordinating design changes for a specific trial across its international locations.Success rate
For vaccines, the probability of success ranges from 7% for non-industry-sponsored candidates to 40% for industry-sponsored candidates. A 2019 review of average success rates of clinical trials at different phases and diseases over the years 2005-15 found a success range of 5-14%. Separated by diseases studied, cancer drug trials were on average only 3% successful, whereas ophthalmology drugs and vaccines for infectious diseases were 33% successful. Trials using disease biomarkers, especially in cancer studies, were more successful than those not using biomarkers. A 2010 review found about 50% of drug candidates either fail during the Phase III trial or are rejected by the national regulatory agency.Phase II/III cost
The amount of money spent on Phase II/III trials depends on numerous factors, with therapeutic area being studied and types of clinical procedures as key drivers. Phase II studies may cost as much as $20 million, and Phase III as much as $53 million.Phase IV
A Phase IV trial is also known as a postmarketing surveillance trial or drug monitoring trial to assure long-term safety and effectiveness of the drug, vaccine, device or diagnostic test. Phase IV trials involve the safety surveillance ( pharmacovigilance) and ongoing technical support of a drug after it receives regulatory approval to be sold. Phase IV studies may be required by regulatory authorities or may be undertaken by the sponsoring company for competitive (finding a new market for the drug) or other reasons (for example, the drug may not have been tested for interactions with other drugs, or on certain population groups such as pregnant women, who are unlikely to subject themselves to trials). The safety surveillance is designed to detect any rare or long-term adverse effects over a much larger patient population and longer time period than was possible during the Phase I-III clinical trials. Harmful effects discovered by Phase IV trials may result in a drug being withdrawn from the market or restricted to certain uses; examples include cerivastatin (brand names Baycol and Lipobay), troglitazone (Rezulin) and rofecoxib (Vioxx).Overall cost
The entire process of developing a drug from preclinical research to marketing can take approximately 12 to 18 years and often costs well over $1 billion.References
{{Drug design Clinical research Design of experiments Life sciences industry