HOME

TheInfoList



OR:

Earth's climate system is a
complex system A complex system is a system composed of many components that may interact with one another. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication sy ...
with five interacting components: the
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
(air), the
hydrosphere The hydrosphere () is the combined mass of water found on, under, and above the Planetary surface, surface of a planet, minor planet, or natural satellite. Although Earth's hydrosphere has been around for about 4 billion years, it continues to ch ...
(water), the cryosphere (ice and permafrost), the
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time ...
(earth's upper rocky layer) and the
biosphere The biosphere (), also called the ecosphere (), is the worldwide sum of all ecosystems. It can also be termed the zone of life on the Earth. The biosphere (which is technically a spherical shell) is virtually a closed system with regard to mat ...
(living things).IPCC, 2013
Annex III: Glossary
lanton, S. (ed.) In
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
tocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
''
Climate Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteoro ...
'' is the statistical characterization of the climate system. It represents the average
weather Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloud cover, cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmo ...
, typically over a period of 30 years, and is determined by a combination of processes, such as ocean currents and wind patterns. Circulation in the atmosphere and oceans transports heat from the tropical regions to regions that receive less energy from the Sun.
Solar radiation Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically p ...
is the main driving force for this circulation. The
water cycle The water cycle (or hydrologic cycle or hydrological cycle) is a biogeochemical cycle that involves the continuous movement of water on, above and below the surface of the Earth across different reservoirs. The mass of water on Earth remains fai ...
also moves energy throughout the climate system. In addition, certain chemical elements are constantly moving between the components of the climate system. Two examples for these biochemical cycles are the
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and nitrogen cycles. The climate system can change due to internal variability and external forcings. These external forcings can be natural, such as variations in solar intensity and volcanic eruptions, or caused by humans. Accumulation of greenhouse gases in the atmosphere, mainly being emitted by people burning fossil fuels, is causing
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
. Human activity also releases cooling aerosols, but their net effect is far less than that of greenhouse gases. Changes can be amplified by feedback processes in the different climate system components.


Components

The ''atmosphere'' envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
(78%),
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
(21%) and
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
(0.9%). Some trace gases in the atmosphere, such as water vapour and
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to the surface, but block some of the
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation the Earth's surface emits to balance the Sun's radiation. This causes surface temperatures to rise. The hydrological cycle is the movement of water through the climate system. Not only does the hydrological cycle determine patterns of
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, rain and snow mixed ("sleet" in Commonwe ...
, it also has an influence on the movement of energy throughout the climate system. The ''hydrosphere'' proper contains all the liquid water on Earth, with most of it contained in the world's oceans. The ocean covers 71% of Earth's surface to an average depth of nearly , and ocean heat content is much larger than the heat held by the atmosphere. It contains
seawater Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approximat ...
with a salt content of about 3.5% on average, but this varies spatially. Brackish water is found in
estuaries An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environm ...
and some lakes, and most
freshwater Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include non-salty mi ...
, 2.5% of all water, is held in ice and snow. The '' cryosphere'' contains all parts of the climate system where
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
is solid. This includes sea ice, ice sheets,
permafrost Permafrost () is soil or underwater sediment which continuously remains below for two years or more; the oldest permafrost has been continuously frozen for around 700,000 years. Whilst the shallowest permafrost has a vertical extent of below ...
and snow cover. Because there is more land in the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the equator. For other planets in the Solar System, north is defined by humans as being in the same celestial sphere, celestial hemisphere relative to the invariable plane of the Solar ...
compared to the Southern Hemisphere, a larger part of that hemisphere is covered in snow. Both hemispheres have about the same amount of sea ice. Most frozen water is contained in the ice sheets on
Greenland Greenland is an autonomous territory in the Danish Realm, Kingdom of Denmark. It is by far the largest geographically of three constituent parts of the kingdom; the other two are metropolitan Denmark and the Faroe Islands. Citizens of Greenlan ...
and
Antarctica Antarctica () is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean (also known as the Antarctic Ocean), it contains the geographic South Pole. ...
, which average about in height. These ice sheets slowly flow towards their margins. The ''
Earth's crust Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper ...
,'' specifically mountains and valleys, shapes global wind patterns: vast mountain ranges form a barrier to winds and impact where and how much it rains. Land closer to open ocean has a more moderate climate than land farther from the ocean. For the purpose of modelling the climate, the land is often considered static as it changes very slowly compared to the other elements that make up the climate system. The position of the continents determines the geometry of the oceans and therefore influences patterns of ocean circulation. The locations of the seas are important in controlling the transfer of heat and moisture across the globe, and therefore, in determining global climate. Lastly, the ''biosphere'' also interacts with the rest of the climate system.
Vegetation Vegetation is an assemblage of plants and the ground cover they provide. It is a general term, without specific reference to particular Taxon, taxa, life forms, structure, Spatial ecology, spatial extent, or any other specific Botany, botanic ...
is often darker or lighter than the soil beneath, so that more or less of the Sun's heat gets trapped in areas with vegetation. Vegetation is good at trapping water, which is then taken up by its roots. Without vegetation, this water would have run off to the closest rivers or other water bodies. Water taken up by plants instead evaporates, contributing to the hydrological cycle. Precipitation and temperature influences the distribution of different vegetation zones. Carbon assimilation from seawater by the growth of small phytoplankton is almost as much as land plants from the atmosphere. While humans are technically part of the
biosphere The biosphere (), also called the ecosphere (), is the worldwide sum of all ecosystems. It can also be termed the zone of life on the Earth. The biosphere (which is technically a spherical shell) is virtually a closed system with regard to mat ...
, they are often treated as a separate components of Earth's climate system, the '' anthroposphere,'' because of human's large impact on the planet.


Flows of energy, water and elements


Energy and general circulation

The climate system receives energy from the Sun, and to a far lesser extent from the Earth's core, as well as tidal energy from the Moon. The Earth gives off energy to outer space in two forms: it directly reflects a part of the radiation of the Sun and it emits infra-red radiation as black-body radiation. The balance of incoming and outgoing energy, and the passage of the energy through the climate system, determines Earth's energy budget. When the total of incoming energy is greater than the outgoing energy, Earth's Energy Imbalance is positive and the climate system is warming. If more energy goes out, the energy imbalance is negative and Earth experiences cooling. More energy reaches the tropics than the polar regions and the subsequent temperature difference drives the global circulation of the
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
and oceans. Air rises when it warms, flows polewards and sinks again when it cools, returning to the equator. Due to the conservation of
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, the Earth's rotation diverts the air to the right in the Northern Hemisphere and to the left in the Southern hemisphere, thus forming distinct atmospheric cells. Monsoons, seasonal changes in wind and precipitation that occur mostly in the tropics, form due to the fact that land masses heat up more easily than the ocean. The temperature difference induces a pressure difference between land and ocean, driving a steady wind. Ocean water that has more salt has a higher
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
and differences in density play an important role in ocean circulation. The thermohaline circulation transports heat from the tropics to the polar regions. Ocean circulation is further driven by the interaction with wind. The salt component also influences the freezing point temperature. Vertical movements can bring up colder water to the surface in a process called
upwelling Upwelling is an physical oceanography, oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted sur ...
, which cools down the air above.


Hydrological cycle

The hydrological cycle or water cycle describes how it is constantly moved between the surface of the Earth and the atmosphere. Plants evapotranspirate and sunlight evaporates water from oceans and other water bodies, leaving behind
salt In common usage, salt is a mineral composed primarily of sodium chloride (NaCl). When used in food, especially in granulated form, it is more formally called table salt. In the form of a natural crystalline mineral, salt is also known as r ...
and other minerals. The evaporated freshwater later rains back onto the surface. Precipitation and evaporation are not evenly distributed across the globe, with some regions such as the tropics having more rainfall than evaporation, and others having more evaporation than rainfall. The evaporation of water requires substantial quantities of energy, whereas a lot of heat is released during condensation. This '' latent heat'' is the primary source of energy in the atmosphere.


Biogeochemical cycles

Chemical elements, vital for life, are constantly cycled through the different components of the climate system. The
carbon cycle The carbon cycle is a part of the biogeochemical cycle where carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycl ...
is directly important for climate as it determines the concentrations of two important greenhouse gases in the atmosphere: and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
. In the fast part of the carbon cycle, plants take up carbon dioxide from the atmosphere using
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
; this is later re-emitted by the breathing of living creatures. As part of the slow carbon cycle, volcanoes release by degassing, releasing carbon dioxide from the Earth's crust and mantle. As in the atmosphere makes rain a bit acidic, this rain can slowly dissolve some rocks, a process known as '' weathering''. The minerals that are released in this way, transported to the sea, are used by living creatures whose remains can form
sedimentary rock Sedimentary rocks are types of rock (geology), rock formed by the cementation (geology), cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or de ...
s, bringing the carbon back to the lithosphere. The
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmosphere, atmospheric, terrestrial ecosystem, terrestrial, and marine ecosystems. The conversion of nitrogen can ...
describes the flow of active nitrogen. As atmospheric
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
is inert, micro-organisms first have to convert this to an active nitrogen compound in a process called ''fixing nitrogen'', before it can be used as a building block in the biosphere. Human activities play an important role in both carbon and nitrogen cycles: the burning of
fossil fuels A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geologica ...
has displaced carbon from the lithosphere to the atmosphere, and the use of fertilizers has vastly increased the amount of available fixed nitrogen.


Changes within the climate system

Climate is constantly varying, on timescales that range from seasons to the lifetime of the Earth. Changes caused by the system's own components and dynamics are called ''internal climate variability''. The system can also experience ''external forcing'' from phenomena outside of the system (e.g. a change in Earth's orbit). Longer changes, usually defined as changes that persist for at least 30 years, are referred to as ''climate changes'', although this phrase usually refers to the current global climate change. When the climate changes, the effects may build on each other, cascading through the other parts of the system in a series of climate feedbacks (e.g. albedo changes), producing many different effects (e.g.
sea level rise The sea level has been rising from the end of the last ice age, which was around 20,000 years ago. Between 1901 and 2018, the average sea level rose by , with an increase of per year since the 1970s. This was faster than the sea level had e ...
).


Internal variability

Components of the climate system vary continuously, even without external pushes (external forcing). One example in the atmosphere is the North Atlantic Oscillation (NAO), which operates as an atmospheric pressure see-saw. The Portuguese
Azores The Azores ( , , ; , ), officially the Autonomous Region of the Azores (), is one of the two autonomous regions of Portugal (along with Madeira). It is an archipelago composed of nine volcanic islands in the Macaronesia region of the North Atl ...
typically have high pressure, whereas there is often lower pressure over
Iceland Iceland is a Nordic countries, Nordic island country between the Atlantic Ocean, North Atlantic and Arctic Oceans, on the Mid-Atlantic Ridge between North America and Europe. It is culturally and politically linked with Europe and is the regi ...
. The difference in pressure oscillates and this affects weather patterns across the North Atlantic region up to central
Eurasia Eurasia ( , ) is a continental area on Earth, comprising all of Europe and Asia. According to some geographers, Physical geography, physiographically, Eurasia is a single supercontinent. The concept of Europe and Asia as distinct continents d ...
. For instance, the weather in Greenland and Canada is cold and dry during a positive NAO. Different phases of the North Atlantic oscillation can be sustained for multiple decades. The ocean and atmosphere can also work together to spontaneously generate internal climate variability that can persist for years to decades at a time. Examples of this type of variability include the El Niño–Southern Oscillation, the Pacific decadal oscillation, and the Atlantic Multidecadal Oscillation. These variations can affect global average surface temperature by redistributing heat between the deep ocean and the atmosphere; but also by altering the cloud, water vapour or sea ice distribution, which can affect the total energy budget of the earth. The oceanic aspects of these oscillations can generate variability on centennial timescales due to the ocean having hundreds of times more mass than the
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, and therefore larger heat capacity and thermal inertia. For example, alterations to ocean processes such as thermohaline circulation play a key role in redistributing heat in the world's oceans. Understanding internal variability helped scientists to attribute recent climate change to greenhouse gases.


External climate forcing

On long timescales, the climate is determined mainly by how much energy is in the system and where it goes. When the Earth's energy budget changes, the climate follows. A change in the energy budget is called a forcing. When the change is caused by something outside of the five components of the climate system, it is called an ''external forcing''. Volcanoes, for example, result from deep processes within the earth that are not considered part of the climate system. Human actions, off-planet changes, such as solar variation and incoming asteroids, are also ''external'' to the climate system's five components. The primary value to quantify and compare climate forcings is radiative forcing.


Incoming sunlight

The Sun is the predominant source of energy input to the Earth and drives atmospheric circulation. The amount of energy coming from the Sun varies on shorter time scales, including the 11-year
solar cycle The Solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a periodic 11-year change in the Sun's activity measured in terms of Modern Maximum, variations in the number of observed sunspots on the Sun ...
and longer-term time scales. While the solar cycle is too small to directly warm and cool Earth's surface, it does influence a higher layer of the atmosphere directly, the stratosphere, which may have an effect on the atmosphere near the surface. Slight variations in the Earth's motion can cause large changes in the seasonal distribution of sunlight reaching the Earth's surface and how it is distributed across the globe, although not to the global and yearly average sunlight. The three types of kinematic change are variations in Earth's
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
, changes in the tilt angle of Earth's axis of rotation, and precession of Earth's axis. Together these produce Milankovitch cycles, which affect climate and are notable for their correlation to glacial and interglacial periods.


Greenhouse gases

Greenhouse gases trap heat in the lower part of the atmosphere by absorbing longwave radiation. In the Earth's past, many processes contributed to variations in greenhouse gas concentrations. Currently, emissions by humans are the cause of increasing concentrations of some greenhouse gases, such as ,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
and . The dominant contributor to the
greenhouse effect The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source (as in the case of Jupiter) or ...
is water vapour (~50%), with clouds (~25%) and (~20%) also playing an important role. When concentrations of long-lived greenhouse gases such as are increased, temperature and water vapour increase. Accordingly, water vapour and clouds are not seen as external forcings but as feedback. The weathering of carbonates and silicates removes carbon from the atmosphere.


Aerosols

Liquid and solid particles in the atmosphere, collectively named ''aerosols'', have diverse effects on the climate. Some primarily scatter sunlight, cooling the planet, while others absorb sunlight and warm the atmosphere. Indirect effects include the fact that aerosols can act as cloud condensation nuclei, stimulating cloud formation. Natural sources of aerosols include sea spray, mineral dust, meteorites and volcanoes. Still, humans also contribute as a human activity, such as the combustion of biomass or fossil fuels, releases aerosols into the atmosphere. Aerosols counteract some of the warming effects of emitted greenhouse gases until they fall back to the surface in a few years or less. Although volcanoes are technically part of the lithosphere, which is part of the climate system, volcanism is defined as an external forcing agent. On average, there are only several volcanic eruptions per century that influence Earth's climate for longer than a year by ejecting tons of SO2 into the stratosphere. The sulfur dioxide is chemically converted into aerosols that cause cooling by blocking a fraction of sunlight to the Earth's surface. Small eruptions affect the atmosphere only subtly.


Land use and cover change

Changes in land cover, such as change of water cover (e.g. rising sea level, drying up of lakes and outburst floods) or
deforestation Deforestation or forest clearance is the removal and destruction of a forest or stand of trees from land that is then converted to non-forest use. Deforestation can involve conversion of forest land to farms, ranches, or urban use. Ab ...
, particularly through human use of the land, can affect the climate. The
reflectivity The reflectance of the surface of a material is its effectiveness in Reflection (physics), reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the respon ...
of the area can change, causing the region to capture more or less sunlight. In addition, vegetation interacts with the hydrological cycle, so precipitation is also affected. Landscape fires release greenhouse gases into the atmosphere and release black carbon, which darkens snow, making it easier to melt.


Responses and feedbacks

The different elements of the climate system respond to external forcing in different ways. One important difference between the components is the speed at which they react to a forcing. The atmosphere typically responds within a couple of hours to weeks, while the deep ocean and ice sheets take centuries to millennia to reach a new equilibrium. The initial response of a component to an external forcing can be damped by negative feedbacks and enhanced by positive feedbacks. For example, a significant decrease of solar intensity would quickly lead to a temperature decrease on Earth, which would then allow ice and snow cover to expand. The extra snow and ice has a higher albedo or reflectivity, and therefore reflects more of the Sun's radiation back into space before it can be absorbed by the climate system as a whole; this in turn causes the Earth to cool down further.


References


Sources

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


External links

* {{global warming Earth sciences Climate variability and change