Chelated Platinum
   HOME

TheInfoList



OR:

Chelated platinum is an
ionized Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
form of
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
that forms two or more bonds with a
counter ion 160px, cation-exchange_resin.html" ;"title="Polystyrene sulfonate, a cation-exchange resin">Polystyrene sulfonate, a cation-exchange resin, is typically supplied with as the counterion. In chemistry, a counterion (sometimes written as "counter ...
. Some platinum chelates are claimed to have
antimicrobial An antimicrobial is an agent that kills microorganisms (microbicide) or stops their growth (bacteriostatic agent). Antimicrobial medicines can be grouped according to the microorganisms they are used to treat. For example, antibiotics are used aga ...
activity.


Synthesis

Although the concept and practical use of metal chelation is common, chelation of inert metals, such as platinum, has been rarely reported and the yield was extremely low. To produce chelated platinum solution, tetraammonium
EDTA Ethylenediaminetetraacetic acid (EDTA), also called EDTA acid, is an aminopolycarboxylic acid with the formula . This white, slightly water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-solubl ...
, NTA, DTPA or HEDTA type chelating agent was mixed with platinum or platinum chemical compounds. The resulting chelated platinum would be in 4 forms: * EDTA: (i) (NH4)4-(EDTA)n•Pt, (ii) (NH4)4-n(EDTA•Pt), (iii) K4-n(EDTA•Pt) or (iv) K2-n(EDTA•Pt). * NTA: (i) (NH4)4-(NTA)n•Pt, (ii) (NH4)4-n(NTA•Pt), (iii) K4-n(NTA•Pt) or (iv) K2-n(NTA•Pt). * DTPA: (i) (NH4)4-(DTPA)n•Pt, (ii) (NH4)4-n(DTPA•Pt), (iii) K4-n(DTPA•Pt) or (iv) K2-n(DTPA•Pt). * HEDTA: (i) (NH4)4-(HEDTA)n•Pt, (ii) (NH4)4-n(HEDTA•Pt), (iii) K4-n(HEDTA•Pt) or (iv) K2-n(HEDTA•Pt). The core technique was the usage of a bridge-type heterogeneous chelation architecture to capture metal in a stable water-soluble state. Surprisingly, platinum ion in this particular multi-phase bridged chelated state is amazingly stable. Chelated platinum solution is in the form of high energy dielectric aqueous solution.
Silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
,
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
and
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
are best known
precious metal Precious metals are rare, naturally occurring metallic chemical elements of high Value (economics), economic value. Precious metals, particularly the noble metals, are more corrosion resistant and less reactivity (chemistry), chemically reac ...
s. However, from a more comprehensive and chemistry point of view, they should be described as inert metals. Inert metals are very stable. They are difficult to participate directly in ordinary acid-base reactions and turn into metal compounds. Therefore, they can stay alone in the form of single element in nature. To turn silver, platinum and gold into metal complex, it can only be performed in very special and particular reaction environment. Furthermore, it is much more difficult to make inert metals into its chelated form which is stable in acidic and basic conditions. The critical reason is that it should undergo a treatment process that involve a great amount of energy in order to achieve a water-soluble state.


Antimicrobial and antiviral properties

Generally, it is not a simple process to turn an inert precious metal directly into its water-soluble ionic state. Material under high energy treatment would gain certain amount of energy according to energy storage effect. Therefore, when inert metal directly turns into its ionic water-soluble state under high energy treatment, it is certain that this aqueous solution would possess large amount of energy. Due to the high energy state and dielectric properties of platinum metal ion in chelated state, the energy conversion at the contact point between platinum ion and bacteria, which is similar to the situation of electrical short circuit, would lead to cell burst and trigger bactericidal effect. Furthermore, platinum ion in chelated state is much more stable than ordinary metal ion in aqueous solution. Also, the concentration and density of chelated platinum ion can be freely adjusted, this characteristic provides effective concentration for anti-microbial and anti-viral activity. Besides, platinum is known to be the best
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
in the world. The concept of catalyst is that on one hand it triggers catalyzing and reversible reactions, but on the other hand, it does not involve directly in the chemical reaction. Thus, during the microbial eliminating process, there is no deterioration in chelated platinum ion content, such that the bactericidal effective can be continued and sustainable. Besides the effect surface energy, it is also speculated that the antimicrobial and antiviral properties of platinum would involve the following aspects. Same as other antimicrobial and antiviral metal ions, such as silver, gold, and copper platinum ion is also positively charged. Based on the chemical characteristics, the surface of either
Gram-positive In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. The Gram stain is ...
and
Gram-negative Gram-negative bacteria are bacteria that, unlike gram-positive bacteria, do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. Their defining characteristic is that their cell envelope consists ...
bacteria is negatively charged Meanwhile, similar surface characteristics could be found in fungi and enveloped virus. The positively charged platinum ions would be attracted by the negatively charged cell surface through electrostatic interaction and involved in electron transfer. With the destabilization of cell membrane, change in membrane potential, pH and local conductivity, the permeability of the membrane would be significantly increased, leading to the rupture of microbe or virus outer membrane layer. Furthermore, some functional group of proteins might bind to metal ion that would cause protein denaturation. Eventually cell death or disruption of virus structure would be triggered. Apart from the structural damage of membrane, metal ions also contribute to the generation of
reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
(ROS) inside the cell. ROS would oxidize
glutathione Glutathione (GSH, ) is an organic compound with the chemical formula . It is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources ...
, which is vital compound in bacteria carry out antioxidant defense system to combat against ROS. Consequently, the cell would be destructed due to the reduction of intracellular ATP level, cellular enzyme denaturation, interruption of protein synthesis and DNA damage contributed by the oxidative stress or direct interaction with the metal ion. Since the interaction of metal ion with some atoms, such as nitrogen, oxygen and sulphur, which are abundant in most cellular biomolecules, is very strong and non-specific, therefore, metal ion could possess a broad spectrum of antimicrobial property.


Safety

Regarding safety concern, platinum cannot be absorbed by the body. Platinum has widely been used in numerous kinds of medical implants, such as dental alloys, aneurysm coils, medical device electrodes, coronary stents and catheters. Allergy of platinum metal in human has rarely been reported. Only platinum compounds which possess labile leaving groups coordinated to platinum, such as complex halogenated platinum salts or cisplatin, show hypersensitivity and/or toxicity to human. Since the chelated platinum ion is tightly bound to the chelating agent in the form of macromolecule, therefore, toxicity problem would not be an issue.


References

{{reflist Platinum