Chandler Wobble
   HOME

TheInfoList



OR:

The Chandler wobble or Chandler variation of latitude is a small deviation in the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's axis of
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
relative to the solid earth, which was discovered by and named after American
astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
Seth Carlo Chandler in 1891. It amounts to change of about in the point at which the axis intersects the Earth's surface and has a period of 433 days. This wobble, which is an astronomical nutation, combines with another wobble with a period of six years, so that the total
polar motion Polar motion of the Earth is the motion of the Earth's rotation, Earth's rotational axis relative to its Earth's crust, crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Ea ...
varies with a period of about 7 years. The Chandler wobble is an example of the kind of motion that can occur for a freely rotating object that is not a sphere; this is called a free nutation. Somewhat confusingly, the direction of the Earth's rotation axis relative to the stars also varies with different periods, and these motions—caused by the tidal forces of the Moon and Sun—are also called nutations, except for the slowest, which are precessions of the equinoxes.


Predictions

The existence of Earth's free nutation was predicted by
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
in Corollaries 20 to 22 of Proposition 66, Book 1 of the '' Philosophiæ Naturalis Principia Mathematica'', and by
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
in 1765 as part of his studies of the dynamics of rotating bodies. Based on the known ellipticity of the Earth, Euler predicted that it would have a period of 305 days. Several astronomers searched for motions with this period, but none was found. Chandler's contribution was to look for motions at any possible period; once the Chandler wobble was observed, the difference between its period and the one predicted by Euler was explained by
Simon Newcomb Simon Newcomb (March 12, 1835 – July 11, 1909) was a Canadians, Canadian–Americans, American astronomer, applied mathematician, and autodidactic polymath. He served as Professor of Mathematics in the United States Navy and at Johns Hopkins ...
as being caused by the non-rigidity of the Earth. The full explanation for the period also involves the fluid nature of the Earth's core and oceans—the wobble, in fact, produces a very small ocean
tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables ...
with an amplitude of approximately , called a '' pole tide'', which is the only tide not caused by an extraterrestrial body. Despite the small amplitude, the gravitational effect of the pole tide is easily detected by the superconducting gravimeter.See, e.g., Fig. 2.3.


Measurement

The International Latitude Observatories were established in 1899 to measure the wobble as observed in latitude determinations. These provided data on the Chandler and annual wobble for most of the 20th century, though they were eventually superseded by other methods of measurement. Monitoring of the
polar motion Polar motion of the Earth is the motion of the Earth's rotation, Earth's rotational axis relative to its Earth's crust, crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Ea ...
is now done by the International Earth Rotation Service (IERS). The wobble's amplitude has varied since its discovery, reaching its largest size in 1910 and fluctuating noticeably from one decade to another. In 2009, Malkin & Miller's analysis of IERS Pole coordinates time series data from January 1946 to January 2009 showed three phase reversals of the wobble, in 1850, 1920, and 2005.


Hypotheses

Since the Earth is not a rigid body, the Chandler wobble should die down with a time constant of about 68 years, a very short period compared to geological timescales. (This is related to the
Q factor In physics and engineering, the quality factor or factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost ...
of the oscillation.) The processes that continually re-excite the wobble are of interest to geophysicists. While it must be due to changes in the mass distribution or
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
of the Earth's outer core,
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, oceans, or crust (from
earthquake An earthquakealso called a quake, tremor, or tembloris the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they ...
s), for a long time the actual source was unclear, since no available motions seemed to be coherent with what was driving the wobble. An investigation was done in 2001 by Richard Gross at the
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center (FFRDC) in La Cañada Flintridge, California, Crescenta Valley, United States. Founded in 1936 by Cali ...
managed by the California Institute of Technology. He used angular momentum models of the atmosphere and the oceans in computer simulations to show that from 1985 to 1996, the Chandler wobble was excited by a combination of atmospheric and oceanic processes, with the dominant excitation mechanism being ocean-bottom pressure fluctuations. Gross found that two-thirds of the "wobble" was caused by fluctuating pressure on the
seabed The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as seabeds. The structure of the seabed of the global ocean is governed by plate tectonics. Most of ...
, which, in turn, is caused by changes in the circulation of the oceans caused by variations in
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
,
salinity Salinity () is the saltiness or amount of salt (chemistry), salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensio ...
, and
wind Wind is the natural movement of atmosphere of Earth, air or other gases relative to a planetary surface, planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heatin ...
. The remaining third is due to
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
fluctuations.


Chandler wobble of Mars

Using 18 years of radio tracking observations of the Mars Odyssey, Mars Reconnaissance Orbiter and the Mars Global Surveyor spacecraft, the Chandler wobble of
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
has been detected. It is the first time it has been detected on a planetary body other than the Earth. The amplitude is 10 cm, the period is 206.9 ± 0.5 days, and it is in a nearly circular counterclockwise direction as viewed from the North Pole.


See also

* Milankovitch cycles * United States Naval Observatory


References


Further reading

* Carter, B. and M. S. Carter, 2003, "Latitude, How American Astronomers Solved the Mystery of Variation," Naval Institute Press, Annapolis. * * * * Lambeck, Kurt, 1980, ''The Earth's Variable Rotation: Geophysical Causes and Consequences'' (Cambridge Monographs on Mechanics), Cambridge University Press, London. * Munk, W. H. and MacDonald, G. J. F., 1960, ''The Rotation of the Earth'', Cambridge University Press, London. * Moritz, H. and I.I. Mueller, 1987, ''Earth Rotation: Theory and Observation'', Continuum International Publishing Group, London. *


External links


Mystery of wobbly Earth solved
July 19, 2000

{{Geophysics navbox Geodesy Periodic phenomena