HOME

TheInfoList



OR:

Ceres ( minor-planet designation: 1 Ceres) is a
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
in the middle main
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids ...
between the orbits of
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
. It was the first known
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
, discovered on 1 January 1801 by Giuseppe Piazzi at Palermo Astronomical Observatory in
Sicily Sicily (Italian language, Italian and ), officially the Sicilian Region (), is an island in the central Mediterranean Sea, south of the Italian Peninsula in continental Europe and is one of the 20 regions of Italy, regions of Italy. With 4. ...
, and announced as a new
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
. Ceres was later classified as an asteroid and then a dwarf planet, the only one not beyond
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
's orbit. Ceres's diameter is about a quarter that of the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
. Its small size means that even at its brightest it is too dim to be seen by the
naked eye Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnification, magnifying, Optical telescope#Light-gathering power, light-collecting optical instrument, such as a telescope or microsc ...
, except under extremely dark skies. Its
apparent magnitude Apparent magnitude () is a measure of the Irradiance, brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction (astronomy), ...
ranges from 6.7 to 9.3, peaking at opposition (when it is closest to
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
) once every 15- to 16-month synodic period. As a result, its surface features are barely visible even with the most powerful telescopes, and little was known about it until the robotic
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
spacecraft ''Dawn'' approached Ceres for its orbital mission in 2015. ''Dawn'' found Ceres's surface to be a mixture of water ice and hydrated minerals such as carbonates and
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
. Gravity data suggest Ceres to be partially differentiated into a muddy (ice-rock) mantle/core and a less dense but stronger crust that is at most thirty per cent ice by volume. Although Ceres likely lacks an internal ocean of liquid water, brines still flow through the outer mantle and reach the surface, allowing cryovolcanoes such as Ahuna Mons to form roughly every fifty million years. This makes Ceres the closest known cryovolcanically active body to the Sun. Ceres has an extremely tenuous and transient atmosphere of water vapour, vented from localised sources on its surface.


History


Discovery

In the years between the acceptance of heliocentrism in the 18th century and the discovery of
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
in 1846, several astronomers argued that mathematical laws predicted the existence of a hidden or missing planet between the orbits of
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
. In 1596, theoretical astronomer
Johannes Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
believed that the ratios between planetary orbits would conform to " God's design" only with the addition of two planets: one between Jupiter and Mars and one between Venus and Mercury. Other theorists, such as
Immanuel Kant Immanuel Kant (born Emanuel Kant; 22 April 1724 – 12 February 1804) was a German Philosophy, philosopher and one of the central Age of Enlightenment, Enlightenment thinkers. Born in Königsberg, Kant's comprehensive and systematic works ...
, pondered whether the gap had been created by the gravity of Jupiter; in 1761, astronomer and mathematician Johann Heinrich Lambert asked: "And who knows whether already planets are missing which have departed from the vast space between Mars and Jupiter? Does it then hold of celestial bodies as well as of the Earth, that the stronger chafe the weaker, and are Jupiter and Saturn destined to plunder forever?" In 1772, German astronomer Johann Elert Bode, citing Johann Daniel Titius, published a formula later known as the Titius–Bode law that appeared to predict the orbits of the known planets but for an unexplained gap between Mars and Jupiter. This formula predicted that there ought to be another planet with an orbital radius near 2.8
astronomical unit The astronomical unit (symbol: au or AU) is a unit of length defined to be exactly equal to . Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its m ...
s (AU), or 420millionkm, from the Sun. The Titius–Bode law gained more credence with
William Herschel Frederick William Herschel ( ; ; 15 November 1738 – 25 August 1822) was a German-British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline Herschel. Born in the Electorate of Hanover ...
's 1781 discovery of
Uranus Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
near the predicted distance for a planet beyond
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
. In 1800, a group headed by Franz Xaver von Zach, editor of the German astronomical journal (''Monthly Correspondence''), sent requests to twenty-four experienced astronomers, whom he dubbed the " celestial police", asking that they combine their efforts and begin a methodical search for the expected planet. Although they did not discover Ceres, they later found the
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s Pallas, Juno, and Vesta. One of the astronomers selected for the search was Giuseppe Piazzi, a Catholic priest at the academy of Palermo, Sicily. Before receiving his invitation to join the group, Piazzi discovered Ceres on 1 January 1801. He was searching for "the 87th tarof the Catalogue of the Zodiacal stars of Mr la Caille", but found that "it was preceded by another". Instead of a star, Piazzi had found a moving starlike object, which he first thought was a comet. Piazzi observed Ceres twenty-four times, the final sighting occurring on 11 February 1801, when illness interrupted his work. He announced his discovery on 24 January 1801 in letters to two fellow astronomers, his compatriot Barnaba Oriani of
Milan Milan ( , , ; ) is a city in northern Italy, regional capital of Lombardy, the largest city in Italy by urban area and the List of cities in Italy, second-most-populous city proper in Italy after Rome. The city proper has a population of nea ...
and Bode in
Berlin Berlin ( ; ) is the Capital of Germany, capital and largest city of Germany, by both area and List of cities in Germany by population, population. With 3.7 million inhabitants, it has the List of cities in the European Union by population withi ...
. He reported it as a comet, but "since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet". In April, Piazzi sent his complete observations to Oriani, Bode, and French astronomer
Jérôme Lalande Joseph Jérôme Lefrançois de Lalande (; 11 July 1732 – 4April 1807) was a French astronomer, freemason and writer. He is known for having estimated a precise value of the astronomical unit (the distance from the Earth to the Sun) using measu ...
. The information was published in the September 1801 issue of the . By this time, the apparent position of Ceres had changed (primarily due to Earth's motion around the Sun) and was too close to the Sun's glare for other astronomers to confirm Piazzi's observations. Towards the end of the year, Ceres should have been visible again, but after such a long time, it was difficult to predict its position. To recover Ceres, the mathematician
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
, then twenty-four years old, developed an efficient method of orbit determination. He predicted the path of Ceres within a few weeks and sent his results to von Zach. On 31 December 1801, von Zach and fellow celestial policeman Heinrich W. M. Olbers found Ceres near the predicted position and continued to record its position. At 2.8 AU from the Sun, Ceres appeared to fit the Titius–Bode law almost perfectly; when Neptune was discovered in 1846, eight AU closer than predicted, most astronomers concluded that the law was a coincidence. The early observers were able to calculate the size of Ceres only to within an order of magnitude. Herschel underestimated its diameter at in 1802; in 1811, German astronomer Johann Hieronymus Schröter overestimated it as . In the 1970s, infrared photometry enabled more accurate measurements of its
albedo Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
, and Ceres's diameter was determined to within ten percent of its true value of .


Name and symbol

Piazzi's proposed name for his discovery was ''Ceres Ferdinandea'': ''Ceres'' after the Roman goddess of agriculture, whose earthly home, and oldest temple, lay in Sicily; and ''Ferdinandea'' in honour of Piazzi's monarch and patron, King FerdinandIII of
Sicily Sicily (Italian language, Italian and ), officially the Sicilian Region (), is an island in the central Mediterranean Sea, south of the Italian Peninsula in continental Europe and is one of the 20 regions of Italy, regions of Italy. With 4. ...
. The latter was not acceptable to other nations and was dropped. Before von Zach's recovery of Ceres in December 1801, von Zach referred to the planet as ''
Hera In ancient Greek religion, Hera (; ; in Ionic Greek, Ionic and Homeric Greek) is the goddess of marriage, women, and family, and the protector of women during childbirth. In Greek mythology, she is queen of the twelve Olympians and Mount Oly ...
,'' and Bode referred to it as '' Juno''. Despite Piazzi's objections, those names gained currency in Germany before the object's existence was confirmed. Once it was, astronomers settled on Piazzi's name. The adjectival forms of ''Ceres'' are ''Cererian'' and ''Cererean'', both pronounced .
Cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
, a rare-earth element discovered in 1803, was named after Ceres. The old astronomical symbol of Ceres, still used in astrology, is a
sickle A sickle, bagging hook, reaping-hook or grasshook is a single-handed agricultural tool designed with variously curved blades and typically used for harvesting or reaping grain crops, or cutting Succulent plant, succulent forage chiefly for feedi ...
, . The sickle was one of the classical symbols of the goddess Ceres and was suggested, apparently independently, by von Zach and Bode in 1802. It is similar in form to the symbol (a circle with a small cross beneath) of the planet Venus, but with a break in the circle. It had various minor graphic variants, including a reversed form typeset as a 'C' (the initial letter of the name ''Ceres'') with a plus sign. The generic asteroid symbol of a numbered disk, ①, was introduced in 1867 and quickly became the norm.


Classification

The categorisation of Ceres has changed more than once and has been the subject of some disagreement. Bode believed Ceres to be the "missing planet" he had proposed to exist between Mars and Jupiter. Ceres was assigned a planetary symbol and remained listed as a planet in astronomy books and tables (along with Pallas, Juno, and Vesta) for over half a century. As other objects were discovered in the neighbourhood of Ceres, astronomers began to suspect that it represented the first of a new class of objects. When Pallas was discovered in 1802, Herschel introduced the term ''asteroid'' ("star-like") for these bodies, writing that "they resemble small stars so much as hardly to be distinguished from them, even by very good telescopes". In 1852 Johann Franz Encke, in the '' Berliner Astronomisches Jahrbuch'', declared the traditional system of granting planetary symbols too cumbersome for these new objects and introduced a new method of placing numbers before their names in order of discovery. The numbering system initially began with the fifth asteroid, 5 Astraea, as number1, but in 1867, Ceres was adopted into the new system under the name 1Ceres. By the 1860s, astronomers widely accepted that a fundamental difference existed between the major planets and asteroids such as Ceres, though the word "planet" had yet to be precisely defined. In the 1950s, scientists generally stopped considering most asteroids as planets, but Ceres sometimes retained its status after that because of its planet-like geophysical complexity. Then, in 2006, the debate surrounding
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of Trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Su ...
led to calls for a definition of "planet", and the possible reclassification of Ceres, perhaps even its general reinstatement as a planet. A proposal before the
International Astronomical Union The International Astronomical Union (IAU; , UAI) is an international non-governmental organization (INGO) with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and developmen ...
(IAU), the global body responsible for astronomical nomenclature and classification, defined a planet as "a celestial body that (a) has sufficient mass for its self-gravity to overcome rigid-body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (b) is in orbit around a star, and is neither a star nor a satellite of a planet". Had this resolution been adopted, it would have made Ceres the fifth planet in order from the Sun, but on 24 August 2006 the assembly adopted the additional requirement that a planet must have " cleared the neighbourhood around its orbit". Ceres is not a planet because it does not dominate its orbit, sharing it as it does with the thousands of other asteroids in the asteroid belt and constituting only about forty per cent of the belt's total mass. Bodies that met the first proposed definition but not the second, such as Ceres, were instead classified as
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
s. Planetary geologists still often ignore this definition and consider Ceres to be a planet anyway. Ceres is a dwarf planet, but there is some confusion about whether it is also an asteroid. A NASA webpage states that Vesta, the belt's second-largest object, is the largest asteroid. The IAU has been equivocal on the subject, though its
Minor Planet Center The Minor Planet Center (MPC) is the official body for observing and reporting on minor planets under the auspices of the International Astronomical Union (IAU). Founded in 1947, it operates at the Smithsonian Astrophysical Observatory. Funct ...
, the organisation charged with cataloguing such objects, notes that dwarf planets may have dual designations, and the joint IAU/
USGS The United States Geological Survey (USGS), founded as the Geological Survey, is an government agency, agency of the United States Department of the Interior, U.S. Department of the Interior whose work spans the disciplines of biology, geograp ...
/NASA ''Gazetteer'' categorises Ceres as both asteroid and a dwarf planet.


Orbit

Ceres follows an orbit between Mars and Jupiter, near the middle of the asteroid belt, with an orbital period (year) of 4.6 Earth years. Compared to other planets and dwarf planets, Ceres's orbit is moderately tilted relative to that of Earth; its inclination (''i'') is 10.6°, compared to 7° for Mercury and 17° for Pluto. It is also slightly elongated, with an
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
(''e'') = 0.08, compared to 0.09 for Mars. Ceres is not part of an asteroid family, probably due to its large proportion of ice, as smaller bodies with the same composition would have sublimated to nothing over the age of the Solar System. It was once thought to be a member of the Gefion family, the members of which share similar proper orbital elements, suggesting a common origin through an asteroid collision in the past. Ceres was later found to have a different composition from the Gefion family and appears to be an interloper, having similar orbital elements but not a common origin.


Resonances

Due to their small masses and large separations, objects within the asteroid belt rarely fall into gravitational resonances with each other. Nevertheless, Ceres is able to capture other asteroids into temporary 1:1 resonances (making them temporary trojans), for periods from a few hundred thousand to more than two million years. Fifty such objects have been identified. Ceres is close to a 1:1 mean-motion orbital resonance with Pallas (their proper orbital periods differ by 0.2%), but not close enough to be significant over astronomical timescales.


Rotation and axial tilt

The rotation period of Ceres (the Cererian day) is 9hours and 4minutes; the small equatorial crater of Kait is selected as its
prime meridian A prime meridian is an arbitrarily chosen meridian (geography), meridian (a line of longitude) in a geographic coordinate system at which longitude is defined to be 0°. On a spheroid, a prime meridian and its anti-meridian (the 180th meridian ...
. Ceres has an axial tilt of 4°, small enough for its polar regions to contain permanently shadowed craters that are expected to act as cold traps and accumulate water ice over time, similar to what occurs on the Moon and Mercury. About 0.14% of water molecules released from the surface are expected to end up in the traps, hopping an average of three times before escaping or being trapped. '' Dawn'', the first spacecraft to orbit Ceres, determined that the north polar axis points at right ascension 19h 25m 40.3s (291.418°), declination +66° 45' 50" (about 1.5 degrees from Delta Draconis), which means an axial tilt of 4°. This means that Ceres currently sees little to no seasonal variation in sunlight by latitude. Gravitational influence from Jupiter and Saturn over the course of the last three million years has triggered cyclical shifts in Ceres's axial tilt, ranging from two to twenty degrees, meaning that seasonal variation in sun exposure has occurred in the past, with the last period of seasonal activity estimated at 14,000 years ago. Those craters that remain in shadow during periods of maximum axial tilt are the most likely to retain water ice from eruptions or cometary impacts over the age of the Solar System.


Geology

Ceres is the largest asteroid in the main asteroid belt. It has been classified as a
Ctype Ctypes, ctype or another variant may refer to: Science * C-type natriuretic peptide * C-type lectin A C-type lectin (CLEC) is a type of carbohydrate-binding protein known as a lectin. The C-type designation is from their requirement for calc ...
or carbonaceous asteroid and, due to the presence of clay minerals, as a G-type asteroid. It has a similar, but not identical, composition to that of carbonaceous chondrite meteorites. It is an oblate spheroid, with an equatorial diameter 8% larger than its polar diameter. Measurements from the ''Dawn'' spacecraft found a mean diameter of and a mass of . This gives Ceres a density of , suggesting that a quarter of its mass is water ice. Ceres makes up 40% of the estimated mass of the asteroid belt, and it has times the mass of the next asteroid, Vesta, but it has only the mass of the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
, and its surface gravity is that of Earth ( of the Moon's). It is close to being in hydrostatic equilibrium, but some deviations from an equilibrium shape have yet to be explained. Ceres is the only widely accepted dwarf planet with an orbital period less than that of Neptune. Modelling has suggested Ceres's rocky material is partially differentiated, and that it may possess a small core, but the data is also consistent with a mantle of hydrated
silicate A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
s and no core. Because ''Dawn'' lacked a magnetometer, it is not known if Ceres has a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
; it is believed not to. Ceres's internal differentiation may be related to its lack of a
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
, as satellites of main belt asteroids are mostly believed to form from collisional disruption, creating an undifferentiated, rubble pile structure.


Surface


Composition

The surface composition of Ceres is homogeneous on a global scale, and it is rich in
carbonate A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
s and ammoniated phyllosilicates that have been altered by water, though water ice in the regolith varies from approximately 10% in polar latitudes to much drier, even ice-free, in the equatorial regions. Studies using the
Hubble Space Telescope The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
show
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
,
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
, and
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
on Ceres's surface. The graphite is evidently the result of space weathering on Ceres's older surfaces; the latter two are volatile under Cererian conditions and would be expected to either escape quickly or settle in cold traps, and so are evidently associated with relatively recent geological activity.
Organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s were detected in the Ernutet crater, and at least another eleven regions are candidates for their presence. Most of the planet's near surface is rich in carbon, at approximately 20% by mass. The carbon content is more than five times higher than in carbonaceous chondrite meteorites analysed on Earth. The surface carbon shows evidence of being mixed with products of rock-water interactions, such as clays. This chemistry suggests Ceres formed in a cold environment, perhaps outside the orbit of Jupiter, and that it accreted from ultra-carbon-rich materials in the presence of water, which could provide conditions favourable to organic chemistry. File:PIA21755-CeresMap-CraterNames-20170901.jpg, Black-and-white photographic map of Ceres, centred on 180° longitude, with official nomenclature (September 2017) File:PIA20126-Ceres-PolarRegions-Dawn-20151023.jpg, Ceres, polar regions (November 2015): North (left); south (right). The south pole is in shadow. "Ysolo Mons" has since been renamed "Yamor Mons."


Craters

''Dawn'' revealed that Ceres has a heavily cratered surface, though with fewer large craters than expected. Models based on the formation of the current asteroid belt had predicted Ceres should have ten to fifteen craters larger than in diameter. The largest confirmed crater on Ceres, Kerwan Basin, is across. The most likely reason for this is viscous relaxation of the crust slowly flattening out larger impacts. Ceres's north polar region shows far more cratering than the equatorial region, with the eastern equatorial region in particular comparatively lightly cratered. The overall size frequency of craters of between twenty and a hundred kilometres (10–60mi) is consistent with their having originated in the Late Heavy Bombardment, with craters outside the ancient polar regions likely erased by early cryovolcanism. Three large shallow basins (planitiae) with degraded rims are likely to be eroded craters. The largest, Vendimia Planitia, at across, is also the largest single geographical feature on Ceres. Two of the three have higher than average ammonium concentrations. ''Dawn'' observed 4,423 boulders larger than in diameter on the surface of Ceres. These boulders likely formed through impacts, and are found within or near craters, though not all craters contain boulders. Large boulders are more numerous at higher latitudes. Boulders on Ceres are brittle and degrade rapidly due to thermal stress (at dawn and dusk, the surface temperature changes rapidly) and meteoritic impacts. Their maximum age is estimated to be 150million years, much shorter than the lifetime of boulders on Vesta.


Tectonic features

Although Ceres lacks
plate tectonics Plate tectonics (, ) is the scientific theory that the Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago. The model builds on the concept of , an idea developed durin ...
, with the vast majority of its surface features linked either to impacts or to cryovolcanic activity, several potentially
tectonic Tectonics ( via Latin ) are the processes that result in the structure and properties of the Earth's crust and its evolution through time. The field of ''planetary tectonics'' extends the concept to other planets and moons. These processes ...
features have been tentatively identified on its surface, particularly in its eastern hemisphere. The Samhain Catenae, kilometre-scale linear fractures on Ceres's surface, lack any apparent link to impacts and bear a stronger resemblance to pit crater chains, which are indicative of buried
normal fault In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic ...
s. Also, several craters on Ceres have shallow, fractured floors consistent with cryomagmatic intrusion.


Cryovolcanism

Ceres has one prominent mountain, Ahuna Mons; this appears to be a cryovolcano and has few craters, suggesting a maximum age of 240million years. Its relatively high gravitational field suggests it is dense, and thus composed more of rock than ice, and that its placement is likely due to diapirism of a slurry of brine and silicate particles from the top of the mantle. It is roughly antipodal to Kerwan Basin. Seismic energy from the Kerwan-forming impact may have focused on the opposite side of Ceres, fracturing the outer layers of the crust and triggering the movement of high-viscosity cryomagma (muddy water ice softened by its content of salts) onto the surface. Kerwan too shows evidence of the effects of liquid water due to impact-melting of subsurface ice. A 2018
computer simulation Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determin ...
suggests that cryovolcanoes on Ceres, once formed, recede due to viscous relaxation over several hundred million years. The team identified 22 features as strong candidates for relaxed cryovolcanoes on Ceres's surface. Yamor Mons, an ancient, impact-cratered peak, resembles Ahuna Mons despite being much older, due to it lying in Ceres's northern polar region, where lower temperatures prevent viscous relaxation of the crust. Models suggest that, over the past billion years, one cryovolcano has formed on Ceres on average every fifty million years. The eruptions may be linked to ancient impact basins but are not uniformly distributed over Ceres. The model suggests that, contrary to findings at Ahuna Mons, Cererian cryovolcanoes must be composed of far less dense material than average for Ceres's crust, or the observed viscous relaxation could not occur. An unexpectedly large number of Cererian craters have central pits, perhaps due to cryovolcanic processes; others have central peaks. Hundreds of bright spots (faculae) have been observed by ''Dawn'', the brightest in the middle of Occator Crater. The bright spot in the centre of Occator is named Cerealia Facula, and the group of bright spots to its east, Vinalia Faculae. Occator possesses a pit 9–10 km wide, partially filled by a central dome. The dome post-dates the faculae and is likely due to freezing of a subterranean reservoir, comparable to pingos in Earth's Arctic region. A haze periodically appears above Cerealia, supporting the hypothesis that some sort of outgassing or sublimating ice formed the bright spots. In March 2016 ''Dawn'' found definitive evidence of water ice on the surface of Ceres at Oxo crater. On 9 December 2015, NASA scientists reported that the bright spots on Ceres may be due to a type of salt from evaporated brine containing
magnesium sulfate Magnesium sulfate or magnesium sulphate is a chemical compound, a salt with the formula , consisting of magnesium cations (20.19% by mass) and sulfate anions . It is a white crystalline solid, soluble in water but not in ethanol. Magnesi ...
hexahydrate (MgSO4·6H2O); the spots were also found to be associated with ammonia-rich clays.
Near-infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
spectra of these bright areas were reported in 2017 to be consistent with a large amount of sodium carbonate () and smaller amounts of
ammonium chloride Ammonium chloride is an inorganic chemical compound with the chemical formula , also written as . It is an ammonium salt of hydrogen chloride. It consists of ammonium cations and chloride anions . It is a white crystalline salt (chemistry), sal ...
() or ammonium bicarbonate (). These materials have been suggested to originate from the crystallisation of brines that reached the surface. In August 2020 NASA confirmed that Ceres was a water-rich body with a deep reservoir of brine that percolated to the surface in hundreds of locations causing "bright spots", including those in Occator Crater.


Internal structure

The active geology of Ceres is driven by ice and brines. Water leached from rock is estimated to possess a
salinity Salinity () is the saltiness or amount of salt (chemistry), salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensio ...
of around 5%. Altogether, Ceres is approximately 50% water by volume (compared to 0.1% for Earth) and 73% rock by mass. Ceres's largest craters are several kilometres deep, inconsistent with an ice-rich shallow subsurface. The fact that the surface has preserved craters almost in diameter indicates that the outermost layer of Ceres is roughly 1000 times stronger than water ice. This is consistent with a mixture of
silicate A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
s, hydrated salts and methane clathrates, with no more than 30% water ice by volume. Gravity measurements from ''Dawn'' have generated three competing models for Ceres's interior. In the three-layer model, Ceres is thought to consist of an outer, thick crust of ice, salts and hydrated minerals and an inner muddy " mantle" of hydrated rock, such as clays, separated by a layer of a muddy mixture of brine and rock. It is not possible to tell if Ceres's deep interior contains liquid or a core of dense material rich in metal, but the low central density suggests it may retain about 10%
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
. One study estimated the densities of the core and mantle/crust to be 2.46–2.90 and 1.68–1.95g/cm3 respectively, with the mantle and crust together being thick. Only partial dehydration (expulsion of ice) from the core is expected, though the high density of the mantle relative to water ice reflects its enrichment in silicates and salts. That is, the core (if it exists), the mantle and crust all consist of rock and ice, though in different ratios. Ceres's mineral composition can be determined (indirectly) only for its outer . The solid outer crust, thick, is a mixture of ice, salts, and hydrated minerals. Under that is a layer that may contain a small amount of brine. This extends to a depth of at least the limit of detection. Under that is thought to be a mantle dominated by hydrated rocks such as clays. In one two-layer model, Ceres consists of a core of chondrules and a mantle of mixed ice and micron-sized solid particulates ("mud"). Sublimation of ice at the surface would leave a deposit of hydrated particulates perhaps twenty metres thick. The range of the extent of differentiation is consistent with the data, from a large, core of 75% chondrules and 25% particulates and a mantle of 75% ice and 25% particulates, to a small, core consisting nearly entirely of particulates and a mantle of 30% ice and 70% particulates. With a large core, the core–mantle boundary should be warm enough for pockets of brine. With a small core, the mantle should remain liquid below . In the latter case a 2% freezing of the liquid reservoir would compress the liquid enough to force some to the surface, producing cryovolcanism. A second two-layer model suggests a partial differentiation of Ceres into a volatile-rich crust and a denser mantle of hydrated silicates. A range of densities for the crust and mantle can be calculated from the types of meteorite thought to have impacted Ceres. With CI-class meteorites (density 2.46 g/cm3), the crust would be approximately thick and have a density of 1.68 g/cm3; with CM-class meteorites (density 2.9 g/cm3), the crust would be approximately thick and have a density of 1.9 g/cm3. Best-fit modelling yields a crust approximately thick with a density of approximately 1.25 g/cm3, and a mantle/core density of approximately 2.4 g/cm3.


Atmosphere

In 2017, ''Dawn'' confirmed that Ceres has a transient atmosphere of water vapour. Hints of an atmosphere had appeared in early 2014, when the Herschel Space Observatory detected localised mid-latitude sources of water vapour on Ceres, no more than in diameter, which each give off approximately molecules (3kg) of water per second. Two potential source regions, designated Piazzi (123°E, 21°N) and Region A (231°E, 23°N), were visualised in the near infrared as dark areas (Region A also has a bright centre) by the Keck Observatory. Possible mechanisms for the vapour release are sublimation from approximately of exposed surface ice, cryovolcanic eruptions resulting from
radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
internal heat, or pressurisation of a subsurface ocean due to thickening of an overlying layer of ice. In 2015, David Jewitt included Ceres in his list of active asteroids. Surface water ice is unstable at distances less than 5 AU from the Sun, so it is expected to sublime if exposed directly to solar radiation. Proton emission from solar flares and CMEs can sputter exposed ice patches on the surface, leading to a positive correlation between detections of water vapour and solar activity. Water ice can migrate from the deep layers of Ceres to the surface, but it escapes in a short time. Surface sublimation would be expected to be lower when Ceres is farther from the Sun in its orbit, and internally powered emissions should not be affected by its orbital position. The limited data previously available suggested cometary-style sublimation, but evidence from ''Dawn'' suggests geologic activity could be at least partially responsible. Studies using ''Dawn's'' gamma ray and neutron detector (GRaND) reveal that Ceres accelerates electrons from the solar wind; the most accepted hypothesis is that these electrons are being accelerated by collisions between the solar wind and a tenuous water vapour exosphere. Bow shocks like these could also be explained by a transient magnetic field, but this is considered less likely, as the interior of Ceres is not thought to be sufficiently electrically conductive. Ceres's thin exosphere is continuously replenished through exposure of water ice patches by impacts, water ice diffusion through the porous ice crust and proton sputtering during solar activity. The rate of this vapour diffusion scales with grain size and is heavily affected by a global dust mantle consisting of an aggregate of approximately 1 micron particles. Exospheric replenishment through sublimation alone is very small, with the current outgassing rate being only 0.003 kg/s. Various models of an extant exosphere have been attempted including ballistic trajectory, DSMC, and polar cap numerical models. Results showed a water exosphere half-life of 7 hours from the ballistic trajectory model, an outgassing rate of 6 kg/s with an optically thin atmosphere sustained for tens of days using a DSMC model, and seasonal polar caps formed from exosphere water delivery using the polar cap model. The mobility of water molecules within the exosphere is dominated by ballistic hops coupled with interaction of the surface, however less is known about direct interactions with planetary regoliths.


Origin and evolution

Ceres is a surviving
protoplanet A protoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitatio ...
that formed 4.56billion years ago; alongside Pallas and Vesta, one of only three remaining in the inner Solar System, with the rest either merging to form
terrestrial planet A terrestrial planet, tellurian planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate, rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to ...
s, being shattered in collisions or being ejected by Jupiter. Despite Ceres's current location, its composition is not consistent with having formed within the asteroid belt. It seems rather that it formed between the orbits of Jupiter and Saturn, and was deflected into the asteroid belt as Jupiter migrated outward. The discovery of ammonium salts in Occator Crater supports an origin in the outer Solar System, as ammonia is far more abundant in that region. The early geological evolution of Ceres was dependent on the heat sources available during and after its formation: impact energy from planetesimal accretion and decay of
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s (possibly including short-lived extinct radionuclides such as aluminium-26). These may have been sufficient to allow Ceres to differentiate into a rocky core and icy mantle, or even a liquid water ocean, soon after its formation. This ocean should have left an icy layer under the surface as it froze. The fact that ''Dawn'' found no evidence of such a layer suggests that Ceres's original crust was at least partially destroyed by later impacts thoroughly mixing the ice with the salts and silicate-rich material of the ancient seafloor and the material beneath. Ceres possesses surprisingly few large craters, suggesting that viscous relaxation and cryovolcanism have erased older geological features. The presence of clays and carbonates requires chemical reactions at temperatures above 50°C, consistent with hydrothermal activity. It has become considerably less geologically active over time, with a surface dominated by
impact crater An impact crater is a depression (geology), depression in the surface of a solid astronomical body formed by the hypervelocity impact event, impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal c ...
s; nevertheless, evidence from ''Dawn'' reveals that internal processes have continued to sculpt Ceres's surface to a significant extent contrary to predictions that Ceres's small size would have ceased internal geological activity early in its history.


Habitability

Although Ceres is not as actively discussed as a potential home for microbial
extraterrestrial life Extraterrestrial life, or alien life (colloquially, aliens), is life that originates from another world rather than on Earth. No extraterrestrial life has yet been scientifically conclusively detected. Such life might range from simple forms ...
as
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
, Europa, Enceladus, or Titan are, it has the most water of any body in the inner Solar System after Earth, and the likely brine pockets under its surface could provide habitats for life. Unlike Europa or Enceladus, it does not experience tidal heating, but it is close enough to the Sun, and contains enough long-lived radioactive isotopes, to preserve liquid water in its subsurface for extended periods. The remote detection of
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s and the presence of water mixed with 20%
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
by mass in its near surface could provide conditions favourable to organic chemistry. Of the biochemical elements, Ceres is rich in
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
,
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
,
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
and
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
, but
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
has yet to be detected, and sulfur, despite being suggested by Hubble UV observations, was not detected by ''Dawn''.


Observation and exploration


Observation

When in opposition near its perihelion, Ceres can reach an
apparent magnitude Apparent magnitude () is a measure of the Irradiance, brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction (astronomy), ...
of +6.7. This is too dim to be visible to the average
naked eye Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnification, magnifying, Optical telescope#Light-gathering power, light-collecting optical instrument, such as a telescope or microsc ...
, but under ideal viewing conditions, keen eyes may be able to see it. Vesta is the only other asteroid that can regularly reach a similarly bright magnitude, while Pallas and 7 Iris do so only when both in opposition and near perihelion. When in conjunction, Ceres has a magnitude of around +9.3, which corresponds to the faintest objects visible with 10×50 binoculars; thus, it can be seen with such binoculars in a naturally dark and clear night sky around new moon. An occultation of the star BD+8°471 by Ceres was observed on 13 November 1984 in Mexico, Florida and across the
Caribbean The Caribbean ( , ; ; ; ) is a region in the middle of the Americas centered around the Caribbean Sea in the Atlantic Ocean, North Atlantic Ocean, mostly overlapping with the West Indies. Bordered by North America to the north, Central America ...
, allowing better measurements of its size, shape and albedo. On 25 June 1995, Hubble obtained ultraviolet images of Ceres with resolution. In 2002, the Keck Observatory obtained infrared images with resolution using
adaptive optics Adaptive optics (AO) is a technique of precisely deforming a mirror in order to compensate for light distortion. It is used in Astronomy, astronomical telescopes and laser communication systems to remove the effects of Astronomical seeing, atmo ...
. Before the ''Dawn'' mission, only a few surface features had been unambiguously detected on Ceres. High-resolution
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
Hubble images in 1995 showed a dark spot on its surface, which was nicknamed "Piazzi" in honour of the discoverer of Ceres. It was thought to be a crater. Visible-light images of a full rotation taken by Hubble in 2003 and 2004 showed eleven recognisable surface features, the natures of which were undetermined. One of them corresponded to the Piazzi feature.
Near-infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
images over a whole rotation, taken with adaptive optics by the Keck Observatory in 2012, showed bright and dark features moving with Ceres's rotation. Two dark features were circular and were presumed to be craters; one was observed to have a bright central region, and the other was identified as the Piazzi feature. ''Dawn'' eventually revealed Piazzi to be a dark region in the middle of Vendimia Planitia, close to the crater Dantu, and the other dark feature to be within Hanami Planitia and close to Occator Crater.


''Dawn'' mission

In the early 1990s, NASA initiated the Discovery Program, which was intended to be a series of low-cost scientific missions. In 1996, the program's study team proposed a high-priority mission to explore the asteroid belt using a spacecraft with an ion engine. Funding remained problematic for nearly a decade, but by 2004, the ''Dawn'' vehicle passed its critical design review. ''Dawn'', the first space mission to visit either Vesta or Ceres, was launched on 27 September 2007. On 3 May 2011, ''Dawn'' acquired its first targeting image from Vesta. After orbiting Vesta for thirteen months, ''Dawn'' used its ion engine to depart for Ceres, with gravitational capture occurring on 6 March 2015 at a separation of , four months before the ''
New Horizons ''New Horizons'' is an Interplanetary spaceflight, interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institut ...
'' flyby of Pluto. The spacecraft instrumentation included a framing camera, a visual and
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
spectrometer A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
, and a gamma-ray and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
detector. These instruments examined Ceres's shape and elemental composition. On 13 January 2015, as ''Dawn'' approached Ceres, the spacecraft took its first images at near-Hubble resolution, revealing impact craters and a small high-albedo spot on the surface. Additional imaging sessions, at increasingly better resolution, took place from February to April. ''Dawn''s mission profile called for it to study Ceres from a series of circular polar orbits at successively lower altitudes. It entered its first observational orbit ("RC3") around Ceres at an altitude of on 23 April 2015, staying for only one orbit (15 days). The spacecraft then reduced its orbital distance to for its second observational orbit ("survey") for three weeks, then down to ("HAMO;" high altitude mapping orbit) for two months and then down to its final orbit at ("LAMO;" low altitude mapping orbit) for at least three months. In October 2015, NASA released a true-colour portrait of Ceres made by ''Dawn''. In 2017, ''Dawns mission was extended to perform a series of closer orbits around Ceres until the
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
used to maintain its orbit ran out. ''Dawn'' soon discovered evidence of cryovolcanism. Two distinct bright spots (or high-albedo features) inside a crater (different from the bright spots observed in earlier Hubble images) were seen in a 19 February 2015 image, leading to speculation about a possible cryovolcanic origin or outgassing. On 2 September 2016, scientists from the ''Dawn'' team argued in a ''
Science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
'' paper that Ahuna Mons was the strongest evidence yet for cryovolcanic features on Ceres. On 11 May 2015, NASA released a higher-resolution image showing that the spots were composed of multiple smaller spots. On 9 December 2015, NASA scientists reported that the bright spots on Ceres may be related to a type of salt, particularly a form of brine containing magnesium sulfate hexahydrate (MgSO4·6H2O); the spots were also found to be associated with
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
-rich clays. In June 2016, near-infrared spectra of these bright areas were found to be consistent with a large amount of sodium carbonate (), implying that recent geologic activity was probably involved in the creation of the bright spots. From June to October 2018, ''Dawn'' orbited Ceres from as close as to as far away as . The ''Dawn'' mission ended on 1 November 2018 after the spacecraft ran out of fuel.


Future missions

In 2020, an ESA team proposed the Calathus Mission concept, a followup mission to Occator Crater, to return a sample of the bright carbonate faculae and dark organics to Earth. The Chinese Space Agency is designing a sample-return mission from Ceres that would take place during the 2020s.


See also

* List of exceptional asteroids * List of Solar System objects by size * List of former planets


Notes


References


External links


Ceres Trek – An integrated map browser of datasets and maps for 1CeresCeres 3D Model – NASADestination Ceres:Breakfast at Dawn – NASA''Dawn'' mission home page
at JPL
Google Ceres 3D
interactive map of the dwarf planet

from keplersdiscovery.com
Animated reprojected colourised map of Ceres
(22 February 2015) *
Rotating relief model
of Ceres by Seán Doran (about 60% of a full rotation; starts with Occator midway above centre) * * {{Authority control 000001 000001 Discoveries by Giuseppe Piazzi Named minor planets Minor planets visited by spacecraft Articles containing video clips 000001 000001 000001 18010101 Dwarf planets Ferdinand I of the Two Sicilies