Ceramics Manufacturers Of New Zealand
   HOME

TheInfoList



OR:

A ceramic is any of the various hard,
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. ...
, heat-resistant, and
corrosion-resistant Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion enginee ...
material A material is a matter, substance or mixture of substances that constitutes an Physical object, object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical property, physical ...
s made by shaping and then firing an inorganic, nonmetallic material, such as
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
, at a high temperature. Common examples are
earthenware Earthenware is glazed or unglazed Vitrification#Ceramics, nonvitreous pottery that has normally been fired below . Basic earthenware, often called terracotta, absorbs liquids such as water. However, earthenware can be made impervious to liquids ...
,
porcelain Porcelain (), also called china, is a ceramic material made by heating Industrial mineral, raw materials, generally including kaolinite, in a kiln to temperatures between . The greater strength and translucence of porcelain, relative to oth ...
, and
brick A brick is a type of construction material used to build walls, pavements and other elements in masonry construction. Properly, the term ''brick'' denotes a unit primarily composed of clay. But is now also used informally to denote building un ...
. The earliest ceramics made by humans were fired clay bricks used for building house walls and other structures. Other
pottery Pottery is the process and the products of forming vessels and other objects with clay and other raw materials, which are fired at high temperatures to give them a hard and durable form. The place where such wares are made by a ''potter'' is al ...
objects such as pots, vessels, vases and
figurine A figurine (a diminutive form of the word ''figure'') or statuette is a small, three-dimensional sculpture that represents a human, deity or animal, or, in practice, a pair or small group of them. Figurines have been made in many media, with cla ...
s were made from
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
, either by itself or mixed with other materials like
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
, hardened by
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
in fire. Later, ceramics were glazed and fired to create smooth, colored surfaces, decreasing
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
through the use of glassy, amorphous ceramic coatings on top of the crystalline ceramic substrates. Ceramics now include domestic, industrial, and building products, as well as a wide range of materials developed for use in advanced ceramic engineering, such as
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s. The word ''
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
'' comes from the
Ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
word (), meaning "of or for
pottery Pottery is the process and the products of forming vessels and other objects with clay and other raw materials, which are fired at high temperatures to give them a hard and durable form. The place where such wares are made by a ''potter'' is al ...
" (). The earliest known mention of the root ''ceram-'' is the
Mycenaean Greek Mycenaean Greek is the earliest attested form of the Greek language. It was spoken on the Greek mainland and Crete in Mycenaean Greece (16th to 12th centuries BC). The language is preserved in inscriptions in Linear B, a script first atteste ...
, workers of ceramic, written in
Linear B Linear B is a syllabary, syllabic script that was used for writing in Mycenaean Greek, the earliest Attested language, attested form of the Greek language. The script predates the Greek alphabet by several centuries, the earliest known examp ...
syllabic script. The word ''ceramic'' can be used as an adjective to describe a material, product, or process, or it may be used as a noun, either singular or, more commonly, as the
plural In many languages, a plural (sometimes list of glossing abbreviations, abbreviated as pl., pl, , or ), is one of the values of the grammatical number, grammatical category of number. The plural of a noun typically denotes a quantity greater than ...
noun ''ceramics''.


Materials

Ceramic material is an
inorganic An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''. Inor ...
,
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
,
nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
, or
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
material. Some elements, such as
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
or
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, may be considered ceramics. Ceramic materials are brittle, hard, strong in compression, and weak in
shearing Sheep shearing is the process by which the woollen fleece of a sheep is cut off. The person who removes the sheep's wool is called a '' shearer''. Typically each adult sheep is shorn once each year (depending upon dialect, a sheep may be sai ...
and tension. They withstand the chemical erosion that occurs in other materials subjected to acidic or caustic environments. Ceramics generally can withstand very high temperatures, ranging from 1,000 °C to 1,600 °C (1,800 °F to 3,000 °F). The
crystallinity Crystallinity refers to the degree of structural order in a solid. In a crystal, the atoms or molecules are arranged in a regular, periodic manner. The degree of crystallinity has a large influence on hardness, density, transparency and diffusi ...
of ceramic materials varies widely. Most often, fired ceramics are either
vitrified Vitrification (, via French ') is the full or partial transformation of a substance into a glass, that is to say, a non- crystalline or amorphous solid. Glasses differ from liquids structurally and glasses possess a higher degree of connectivity ...
or semi-vitrified, as is the case with earthenware,
stoneware Stoneware is a broad class of pottery fired at a relatively high temperature, to be impervious to water. A modern definition is a Vitrification#Ceramics, vitreous or semi-vitreous ceramic made primarily from stoneware clay or non-refractory fire ...
, and porcelain. Varying crystallinity and
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
composition in the ionic and covalent bonds cause most ceramic materials to be good thermal and electrical insulators (researched in
ceramic engineering Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions ...
). With such a large range of possible options for the composition/structure of a ceramic (nearly all of the elements, nearly all types of bonding, and all levels of crystallinity), the breadth of the subject is vast, and identifiable attributes (
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
,
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.electrical conductivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
) are difficult to specify for the group as a whole. General properties such as high melting temperature, high hardness, poor conductivity, high moduli of elasticity, chemical resistance, and low ductility are the norm, with known exceptions to each of these rules ( piezoelectric ceramics, low
glass transition The glass–liquid transition, or glass transition, is the gradual and Reversible reaction, reversible transition in amorphous solid, amorphous materials (or in amorphous regions within Crystallinity, semicrystalline materials) from a hard and rel ...
temperature ceramics, superconductive ceramics). Composites such as
fiberglass Fiberglass (American English) or fibreglass (English in the Commonwealth of Nations, Commonwealth English) is a common type of fibre-reinforced plastic, fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened i ...
and carbon-fiber-reinforced polymer, carbon fiber, while containing ceramic materials, are not considered to be part of the ceramic family. Highly oriented crystalline ceramic materials are not amenable to a great range of processing. Methods for dealing with them tend to fall into one of two categories: either making the ceramic in the desired shape by reaction ''in situ'' or "forming" powders into the desired shape and then
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
to form a solid body. Ceramic forming techniques include shaping by hand (sometimes including a rotation process called "throwing"), slip casting, tape casting (used for making very thin ceramic capacitors), injection molding, dry pressing, and other variations. Many ceramics experts do not consider materials with an amorphous (noncrystalline) character (i.e., glass) to be ceramics, even though glassmaking involves several steps of the ceramic process and its mechanical properties are similar to those of ceramic materials. However, heat treatments can convert glass into a semi-crystalline material known as glass-ceramic. Traditional ceramic raw materials include clay minerals such as kaolinite, whereas more recent materials include aluminium oxide, more commonly known as alumina. Modern ceramic materials, which are classified as advanced ceramics, include silicon carbide and tungsten carbide. Both are valued for their abrasion resistance and are therefore used in applications such as the wear plates of crushing equipment in mining operations. Advanced ceramics are also used in the medical, electrical, electronics, and armor industries.


History

Human beings appear to have been making their own ceramics for at least 26,000 years, subjecting clay and silica to intense heat to fuse and form ceramic materials. The earliest found so far were in southern central Europe and were sculpted figures, not dishes. The earliest known pottery was made by mixing animal products with clay and firing it at up to . While pottery fragments have been found up to 19,000 years old, it was not until about 10,000 years later that regular pottery became common. An early people that spread across much of Europe is named after its use of pottery: the Corded Ware culture. These early Indo-European languages, Indo-European peoples decorated their pottery by wrapping it with rope while it was still wet. When the ceramics were fired, the rope burned off but left a decorative pattern of complex grooves on the surface. The invention of the wheel eventually led to the production of smoother, more even pottery using the wheel-forming (throwing) technique, like the pottery wheel. Early ceramics were porous, absorbing water easily. It became useful for more items with the discovery of Ceramic glaze, glazing techniques, which involved coating pottery with silicon, bone ash, or other materials that could melt and reform into a glassy surface, making a vessel less pervious to water.


Archaeology

Ceramic artifacts have an important role in archaeology for understanding the culture, technology, and behavior of peoples of the past. They are among the most common artifacts to be found at an archaeological site, generally in the form of small fragments of broken pottery called sherds. The processing of collected sherds can be consistent with two main types of analysis: technical and traditional. The traditional analysis involves sorting ceramic artifacts, sherds, and larger fragments into specific types based on style, composition, manufacturing, and morphology. By creating these typologies, it is possible to distinguish between different cultural styles, the purpose of the ceramic, and the technological state of the people, among other conclusions. Besides, by looking at stylistic changes in ceramics over time, it is possible to separate (seriate) the ceramics into distinct diagnostic groups (assemblages). A comparison of ceramic artifacts with known dated assemblages allows for a chronological assignment of these pieces. The technical approach to ceramic analysis involves a finer examination of the composition of ceramic artifacts and sherds to determine the source of the material and, through this, the possible manufacturing site. Key criteria are the composition of the clay and the Temper (pottery), temper used in the manufacture of the article under study: the temper is a material added to the clay during the initial production stage and is used to aid the subsequent drying process. Types of temper include seashell, shell pieces, granite fragments, and ground sherd pieces called 'Grog (clay), grog'. Temper is usually identified by microscopic examination of the tempered material. Clay identification is determined by a process of refiring the ceramic and assigning a color to it using Munsell color system, Munsell Soil Color notation. By estimating both the clay and temper compositions and locating a region where both are known to occur, an assignment of the material source can be made. Based on the source assignment of the artifact, further investigations can be made into the site of manufacture.


Properties

The physical properties of any ceramic substance are a direct result of its crystalline structure and chemical composition. Solid-state chemistry reveals the fundamental connection between microstructure and properties, such as localized density variations, grain size distribution, type of porosity, and second-phase content, which can all be correlated with ceramic properties such as mechanical strength σ by the Hall-Petch equation,
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
,
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. Martensitic transformations are Diffusionless transformation, diffusionless shear transformations involving the transition between an "austenite" or "parent" phase that is stable at higher temperatures and a "martensitic" phase that is stable at lower temperatures. Because the transformation absorbs energy, stress-induced martensitic transformations can hinder crack progression and increases toughness. A key example of this phenomenon is Zirconium dioxide, zirconia, whose martensitic transformation involves a crystal structure transformation from a Tetragonal crystal system, tetragonal crystal structure (the austenite phase) to a Monoclinic crystal system, monoclinic structure. The volume increase associated with transformation from tetragonal to monoclinic also relieves tensile stress at the crack, tip, further discouraging cracking and increasing toughness. When zirconia particles in a ceramic matrix undergo transformation during fabrication due to cooling , the stress fields around the particles lead to nucleation and extension of microcracks, which can also improve toughness of the material. These stress fields, as well as the particles themselves, can also contribute to crack deflection.


Ice-templating for enhanced mechanical properties

If a ceramic is subjected to substantial mechanical loading, it can undergo a process called Freeze-casting, ice-templating, which allows some control of the microstructure of the ceramic product and therefore some control of the mechanical properties. Ceramic engineers use this technique to tune the mechanical properties to their desired application. Specifically, the Strength of materials, strength is increased when this technique is employed. Ice templating allows the creation of macroscopic pores in a unidirectional arrangement. The applications of this oxide strengthening technique are important for solid oxide fuel cells and Water purification, water filtration devices. To process a sample through ice templating, an aqueous Colloid, colloidal suspension is prepared to contain the dissolved ceramic powder evenly dispersed throughout the colloid, for example yttria-stabilized zirconia (YSZ). The solution is then cooled from the bottom to the top on a platform that allows for unidirectional cooling. This forces ice crystals to grow in compliance with the unidirectional cooling, and these ice crystals force the dissolved YSZ particles to the solidification front of the solid-liquid interphase boundary, resulting in pure ice crystals lined up unidirectionally alongside concentrated pockets of colloidal particles. The sample is then heated and at the same the pressure is reduced enough to force the ice crystals to Sublimation (phase transition), sublime and the YSZ pockets begin to Annealing (metallurgy), anneal together to form macroscopically aligned ceramic microstructures. The sample is then further Sintering, sintered to complete the evaporation of the residual water and the final consolidation of the ceramic microstructure. During ice-templating, a few variables can be controlled to influence the pore size and morphology of the microstructure. These important variables are the initial solids loading of the colloid, the cooling rate, the sintering temperature and duration, and the use of certain additives which can influence the microstructural morphology during the process. A good understanding of these parameters is essential to understanding the relationships between processing, microstructure, and mechanical properties of anisotropically porous materials.


Electrical properties


Semiconductors

Some ceramics are
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s. Most of these are transition metal oxides that are II-VI semiconductors, such as zinc oxide. While there are prospects of mass-producing blue light-emitting diodes (LED) from zinc oxide, ceramicists are most interested in the electrical properties that show grain boundary effects. One of the most widely used of these is the varistor. These are devices that exhibit the property that resistance drops sharply at a certain threshold voltage. Once the voltage across the device reaches the threshold, there is a Electrical breakdown, breakdown of the electrical structure in the vicinity of the grain boundaries, which results in its electrical resistance dropping from several megohms down to a few hundred Ohm (unit), ohms. The major advantage of these is that they can dissipate a lot of energy, and they self-reset; after the voltage across the device drops below the threshold, its resistance returns to being high. This makes them ideal for Surge protector, surge-protection applications; as there is control over the threshold voltage and energy tolerance, they find use in all sorts of applications. The best demonstration of their ability can be found in electrical substations, where they are employed to protect the infrastructure from lightning strikes. They have rapid response, are low maintenance, and do not appreciably degrade from use, making them virtually ideal devices for this application. Semiconducting ceramics are also employed as gas sensors. When various gases are passed over a polycrystalline ceramic, its electrical resistance changes. With tuning to the possible gas mixtures, very inexpensive devices can be produced.


Superconductivity

Under some conditions, such as extremely low temperatures, some ceramics exhibit high-temperature superconductivity (in superconductivity, "high temperature" means above 30 K). The reason for this is not understood, but there are two major families of superconducting ceramics.


Ferroelectricity and supersets

Piezoelectricity, a link between electrical and mechanical response, is exhibited by a large number of ceramic materials, including the quartz used to crystal oscillator, measure time in watches and other electronics. Such devices use both properties of piezoelectrics, using electricity to produce a mechanical motion (powering the device) and then using this mechanical motion to produce electricity (generating a signal). The unit of time measured is the natural interval required for electricity to be converted into mechanical energy and back again. The piezoelectric effect is generally stronger in materials that also exhibit pyroelectricity, and all pyroelectric materials are also piezoelectric. These materials can be used to inter-convert between thermal, mechanical, or electrical energy; for instance, after synthesis in a furnace, a pyroelectric crystal allowed to cool under no applied stress generally builds up a static charge of thousands of volts. Such materials are used in motion sensors, where the tiny rise in temperature from a warm body entering the room is enough to produce a measurable voltage in the crystal. In turn, pyroelectricity is seen most strongly in materials that also display the ferroelectric effect, in which a stable electric dipole can be oriented or reversed by applying an electrostatic field. Pyroelectricity is also a necessary consequence of ferroelectricity. This can be used to store information in ferroelectric capacitors, elements of ferroelectric RAM. The most common such materials are lead zirconate titanate and barium titanate. Aside from the uses mentioned above, their strong piezoelectric response is exploited in the design of high-frequency loudspeakers, transducers for sonar, and actuators for atomic force microscope, atomic force and scanning tunneling microscopes.


Positive thermal coefficient

Temperature increases can cause grain boundaries to suddenly become insulating in some semiconducting ceramic materials, mostly mixtures of heavy metals, heavy metal titanates. The critical transition temperature can be adjusted over a wide range by variations in chemistry. In such materials, current will pass through the material until joule heating brings it to the transition temperature, at which point the circuit will be broken and current flow will cease. Such ceramics are used as self-controlled heating elements in, for example, the rear-window defrost circuits of automobiles. At the transition temperature, the material's dielectric response becomes theoretically infinite. While a lack of temperature control would rule out any practical use of the material near its critical temperature, the dielectric effect remains exceptionally strong even at much higher temperatures. Titanates with critical temperatures far below room temperature have become synonymous with "ceramic" in the context of ceramic capacitors for just this reason.


Optical properties

Optics, Optically transparent materials focus on the response of a material to incoming light waves of a range of wavelengths. Optical filter, Frequency selective optical filters can be utilized to alter or enhance the brightness and contrast of a digital image. Guided lightwave transmission via frequency selective waveguides involves the emerging field of fiber optics and the ability of certain glassy compositions as a transmission medium for a range of frequencies simultaneously (multi-mode optical fiber) with little or no adjacent-channel interference, interference between competing wavelengths or frequencies. This resonant normal mode, mode of energy and data transmission via electromagnetic (light) wave propagation, though low powered, is virtually lossless. Optical waveguides are used as components in Integrated optical circuits (e.g. light-emitting diodes, LEDs) or as the transmission medium in local and long haul optical communication systems. Also of value to the emerging materials scientist is the sensitivity of materials to radiation in the thermal infrared (IR) portion of the electromagnetic spectrum. This heat-seeking ability is responsible for such diverse optical phenomena as night-vision and IR luminescence. Thus, there is an increasing need in the military sector for high-strength, robust materials which have the capability to transmit light (electromagnetic waves) in the visible spectrum, visible (0.4 – 0.7 micrometers) and mid-infrared (1 – 5 micrometers) regions of the spectrum. These materials are needed for applications requiring transparency and translucency, transparent armor, including next-generation high-speed missiles and pods, as well as protection against improvised explosive devices (IED). In the 1960s, scientists at General Electric (GE) discovered that under the right manufacturing conditions, some ceramics, especially aluminium oxide (alumina), could be made translucent. These translucent materials were transparent enough to be used for containing the electrical plasma (physics), plasma generated in high-pressure sodium street lamps. During the past two decades, additional types of transparent ceramics have been developed for applications such as nose cones for heat-seeking missiles, windows for fighter aircraft, and scintillation counters for computed tomography scanners. Other ceramic materials, generally requiring greater purity in their make-up than those above, include forms of several chemical compounds, including: #Barium titanate: (often mixed with strontium titanate) displays ferroelectricity, meaning that its mechanical, electrical, and thermal responses are coupled to one another and also history-dependent. It is widely used in electromechanics, electromechanical transducers, ceramic capacitors, and Ferroelectric RAM, data storage elements. crystallite, Grain boundary conditions can create positive temperature coefficient, PTC effects in heating elements. #Sialon (silicon aluminium oxynitride) has high strength; resistance to thermal shock, chemical and wear resistance, and low density. These ceramics are used in non-ferrous molten metal handling, weld pins, and the chemical industry. #Silicon carbide (SiC) is used as a susceptor in microwave furnaces, a commonly used abrasive, and as a refractory, refractory material. #Silicon nitride (Si3nitrogen, N4) is used as an abrasive powder. #Magnesium silicide, Steatite (magnesium silicates) is used as an electrical insulator. #Titanium carbide Used in space shuttle re-entry shields and scratchproof watches. #Uranium oxide (uranium, UO2), used as nuclear fuel, fuel in nuclear reactors. #Yttrium barium copper oxide (Ybarium, Ba2copper, Cu3oxygen, O7−x), a high-temperature superconductor. #Zinc oxide (zinc, ZnO), which is a
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
, and used in the construction of varistors. #Zirconium dioxide (zirconia), which in pure form undergoes many phase transition, phase changes between room temperature and practical
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
temperatures, can be chemically "stabilized" in several different forms. Its high oxygen ion conductivity recommends it for use in fuel cells and automotive oxygen sensors. In another variant, metastable structures can impart fracture toughness, transformation toughening for mechanical applications; most ceramic knife blades are made of this material. Partially stabilised zirconia (PSZ) is much less brittle than other ceramics and is used for metal forming tools, valves and liners, abrasive slurries, kitchen knives and bearings subject to severe abrasion.


Products


By usage

For convenience, ceramic products are usually divided into four main types; these are shown below with some examples: #Structural, including
brick A brick is a type of construction material used to build walls, pavements and other elements in masonry construction. Properly, the term ''brick'' denotes a unit primarily composed of clay. But is now also used informally to denote building un ...
s, pipe (material), pipes, Flooring, floor and roof tiles, vitrified tile #refractory, Refractories, such as kiln linings, gas fire radiants, steel and glass making crucibles #Whitewares, including tableware, cookware, wall tiles, pottery products and sanitary ware #Technical, also known as engineering, advanced, special, and fine ceramics. Such items include: #*gas burner nozzles #*Ballistic vest, ballistic protection, vehicle armor #*nuclear fuel uranium oxide pellets #*Implant (medicine), biomedical implants #*coatings of jet engine turbine blades #*ceramic matrix composite gas turbine parts #*reinforced carbon–carbon ceramic disc brakes #*missile nose cones #*bearing (mechanical), bearings #* thermal insulation tiles used on the Space Shuttle orbiter


Ceramics made with clay

Frequently, the raw materials of modern ceramics do not include clays. Those that do have been classified as: #Earthenware, fired at lower temperatures than other types #Stoneware, Vitrification#Ceramics, vitreous or semi-vitreous #Porcelain, which contains a high content of kaolin #Bone china


Classification

Ceramics can also be classified into three distinct material categories: # Oxides: alumina, beryllia, ceria, zirconia # Non-oxides:
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
, boride,
nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
, silicide # Composite materials: particulate reinforced, Ceramic matrix composite, fiber reinforced, combinations of
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s and non-oxides. Each one of these classes can be developed into unique material properties.


Applications

# Knife blades: the blade of a ceramic knife will stay sharp for much longer than that of a steel knife, although it is more brittle and susceptible to breakage. # Disk brake, Carbon-ceramic brake disks for vehicles: highly resistant to brake fade at high temperatures. # Advanced Composite armor, composite ceramic and metal matrices have been designed for most modern armoured fighting vehicles because they offer superior penetrating resistance against shaped charge (High-explosive anti-tank, HEAT rounds) and kinetic energy penetrators. # Ceramics such as alumina and boron carbide have been used as plates in bulletproof vest, ballistic armored vests to repel high-velocity rifle fire. Such plates are known commonly as Small Arms Protective Insert, small arms protective inserts, or SAPIs. Similar low-weight material is used to protect the Cockpit (aviation), cockpits of some military aircraft. #Ceramic ball bearings can be used in place of steel. Their greater hardness results in lower susceptibility to wear. Ceramic bearings typically last triple the lifetime of steel bearings. They deform less than steel under load, resulting in less contact with the bearing retainer walls and lower friction. In very high-speed applications, heat from friction causes more problems for metal bearings than ceramic bearings. Ceramics are chemically resistant to corrosion and are preferred for environments where steel bearings would rust. In some applications their electricity-insulating properties are advantageous. Drawbacks to ceramic bearings include significantly higher cost, susceptibility to damage under shock loads, and the potential to wear steel parts due to ceramics' greater hardness. # In the early 1980s Toyota researched production of an adiabatic internal combustion engine, engine using ceramic components in the hot gas area. The use of ceramics would have allowed temperatures exceeding 1650 °C. Advantages would include lighter materials and a smaller cooling system (or no cooling system at all), leading to major weight reduction. The expected increase of fuel efficiency (due to higher operating temperatures, demonstrated in Carnot heat engine, Carnot's theorem) could not be verified experimentally. It was found that heat transfer on the hot ceramic cylinder wall was greater than the heat transfer to a cooler metal wall. This is because the cooler gas film on a metal surface acts as a thermal insulator. Thus, despite the desirable properties of ceramics, prohibitive production costs and limited advantages have prevented widespread ceramic engine component adoption. In addition, small imperfections in ceramic material along with low fracture toughness can lead to cracking and potentially dangerous equipment failure. Such engines are possible experimentally, but mass production is not feasible with current technology. # Experiments with ceramic parts for gas turbine heat engine, engines are being conducted. Currently, even blades made of superalloy, advanced metal alloys used in the engines' hot section require cooling and careful monitoring of operating temperatures. Turbine engines made with ceramics could operate more efficiently, providing for greater range and payload. # Recent advances have been made in ceramics which include bioceramics such as dental implants and synthetic bones. Hydroxyapatite, the major mineral component of bone, has been made synthetically from several biological and chemical components and can be formed into ceramic materials. Orthopedic implants coated with these materials bond readily to bone and other tissues in the body without rejection or inflammatory reaction. They are of great interest for gene delivery and tissue engineering scaffolding. Most hydroxyapatite ceramics are quite porous and lack mechanical strength and are therefore used solely to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. They are also used as fillers for orthopedic plastic screws to aid in reducing inflammation and increase the absorption of these plastic materials. Work is being done to make strong, fully dense nanocrystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic but naturally occurring bone mineral. Ultimately, these ceramic materials may be used as bone replacement, or with the incorporation of protein collagens, the manufacture of synthetic bones. # Applications for actinide-containing ceramic materials include nuclear fuels for burning excess plutonium (Pu), or a chemically inert source of alpha radiation in power supplies for uncrewed space vehicles or microelectronic devices. Use and disposal of radioactive actinides require immobilization in a durable host material. Long half-life radionuclides such as actinide are immobilized using chemically durable crystalline materials based on polycrystalline ceramics and large single crystals. # High-tech ceramics are used for producing watch cases. The material is valued by watchmakers for its light weight, scratch resistance, durability, and smooth touch. International Watch Company, IWC is one of the brands that pioneered the use of ceramic in watchmaking. #Ceramics are used in the design of mobile phone bodies due to their high hardness, resistance to scratches, and ability to dissipate heat. Ceramic's thermal management properties help in maintaining optimal device temperatures during heavy use enhancing performance. Additionally, ceramic materials can support wireless charging and offer better signal transmission compared to metals, which can interfere with Antenna (radio), antennas. Companies like Apple Inc., Apple and Samsung have incorporated ceramic in their devices. #Ceramics made of Silicon Carbide, silicon carbide are used in pump and valve components because of their corrosion resistance characteristics. It is also used in nuclear reactors as fuel cladding materials due to their ability to withstand radiation and thermal stress. Other uses of Silicon carbide ceramics include paper manufacturing, ballistics, chemical production, and as pipe system components.


See also

* * * * * * on ceramic


References


Further reading

*


External links

* {{Authority control Ceramics,