Ceramic Nanoparticle
   HOME

TheInfoList



OR:

Ceramic nanoparticle is a type of
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
that is composed of
ceramics A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porce ...
, which are generally classified as inorganic, heat-resistant, nonmetallic solids that can be made of both metallic and nonmetallic compounds. The material offers unique properties. Macroscale ceramics are brittle and rigid and break upon impact. However, Ceramic nanoparticles take on a larger variety of functions, including
dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
,
ferroelectric In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
,
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
,
pyroelectric Pyroelectricity (from Greek: ''pyr'' (πυρ), "fire" and electricity) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of ...
,
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
, magnetoresistive,
superconductive Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gr ...
and
electro-optical Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propaga ...
. Ceramic nanoparticle were discovered in the early 1980s. They were formed using a process called sol-gel which mixes nanoparticles within a solution and gel to form the nanoparticle. Later methods involved
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
(pressure and heat, .e.g
hot isostatic pressing Hot isostatic pressing (HIP) is a manufacturing process, used to reduce the porosity of metals and increase the density of many ceramic materials. This improves the material's mechanical properties and workability. The HIP process subjects a c ...
). The material is so small that it has basically no flaws. Larger scale materials have flaws that render them brittle. In 2014 researchers announced a lasering process involving polymers and ceramic particles to form a nanotruss. This structure was able to recover its original form after repeated crushing. Ceramic nanoparticles have been used as drug delivery mechanism in several diseases including bacterial infections, glaucoma, and most commonly, chemotherapy deliver in
experimental cancer treatment Experimental cancer treatments are mainstream medical therapies intended to treat cancer by improving on, supplementing or replacing conventional methods (surgery, chemotherapy, radiation, and immunotherapy). However, researchers are still tr ...
.


Properties

Ceramic nanoparticle have unique properties because of their size and molecular structure. These properties are often shown in terms of various electrical and magnetic physics phenomenons which include: *
Dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
- An electrical insulator that can be polarized (having electrons aligned so that there is a negative and positive side of the compound) by an electric field to shorten the distance of electron transfer in an electric current *
Ferroelectric In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
- dielectric materials that polarize in more than one direction (the negative and positive sides can be flipped via an electric field) *
Piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
- materials that accumulate an electrical charge under mechanical stress *
Pyroelectric Pyroelectricity (from Greek: ''pyr'' (πυρ), "fire" and electricity) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of ...
- material that can produce a temporary voltage given a temperature change *
Ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
- materials that can to sustain a magnetic field after magnetization * Magnetoresistive - materials that change electrical resistance under an external magnetic field *
Superconductive Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gr ...
- materials that exhibit zero electric resistance when cooled to a critical temperature *
Electro-optical Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propaga ...
- materials that change optical properties under an electric field


Nanotruss

Ceramic nanoparticle is more than 85% air and is very light, strong, flexible and durable. The fractal nanotruss is a nanostructure architecture made of
alumina Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
, or
aluminum oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
. Its maximum compression is about 1 micron from a thickness of 50 nanometers. After its compression, it can revert to its original shape without any structural damage.


Synthesis


Sol-gel

One process for making nanoceramics varies is the sol-gel process, also known as chemical solution deposition. This involves a chemical solution, or the sol, made of nanoparticles in liquid phase and a
precursor Precursor or Precursors may refer to: *Precursor (religion), a forerunner, predecessor ** The Precursor, John the Baptist Science and technology * Precursor (bird), hypothesized genus of fossil birds that was composed of fossilized parts of unre ...
, usually a gel or polymer, made of molecules immersed in a
solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
. The sol and gel are mixed to produce an oxide material which are generally a type of ceramic. The excess products (a liquid solvent) are evaporated. The particles desires are then heated in a process called densification to produce a solid product. This method could also be applied to produce a nanocomposite by heating the gel on a thin film to form a nanoceramic layer on top of the film.


Two-photon lithography

This process uses a laser technique called two-photon lithography to etch out a
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
into a three-dimensional structure. The laser hardens the spots that it touches and leaves the rest unhardened. The unhardened material is then dissolved to produce a "shell". The shell is then coated with ceramic, metals, metallic glass, etc. In the finished state, the nanotruss of ceramic can be flattened and revert to its original state.


Sintering

In another approach
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
was used to consolidate nanoceramic powders using high temperatures. This resulted in a rough material that damages the properties of ceramics and requires more time to obtain an end product. This technique also limits the possible final geometries. Microwave sintering was developed to overcome such problems. Radiation is produced from a
magnetron The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave oven, microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of ...
, which produces electromagnetic waves to vibrate and heat the powder. This method allows for heat to be instantly transferred across the entire volume of material instead of from the outside in. The nanopowder is placed in an insulation box composed of low insulation boards to allow the microwaves to pass through it. The box increases temperature to aid absorption. Inside the boxes are suspectors that absorb microwaves at room temperature to initialize the sintering process. The microwave heats the suspectors to about 600 °C, sufficient to trigger the nanoceramics to absorb the microwaves.


History

In the early 1980s, the first nanoparticles, specifically nanoceramics were formed, using sol-gel. This process was replaced by sintering in the early 2000s and then by microwave sintering. None of these techniques proved suitable for large scale production. In 2002, researchers tried to reverse engineer the microstructure of
seashells A seashell or sea shell, also known simply as a shell, is a hard, protective outer layer usually created by an animal or organism that lives in the sea. Most seashells are made by mollusks, such as snails, clams, and oysters to protec ...
to strengthen ceramics. They discovered that seashells' durability come from their "microarchitecture". Research began to focus on how ceramics could employ such an architecture. In 2012 researchers replicated the sea sponge's structure using ceramics and the nanoarchitecture called nanotruss. As of 2015 the largest result is a 1mm cube. The lattice structure compresses up to 85% of its original thickness and can recover to its original form. These lattices are stabilized into triangles with cross-members for structural integrity and flexibility.


Applications

Medical technology used Ceramic nanoparticle for bone repair. It has been suggested for areas including energy supply and storage, communication, transportation systems, construction and medical technology. Their electrical properties may allow energy to be transferred efficiencies approaching 100%. Nanotrusses may be eventually applicable for building materials, replacing concrete or steel.


References

{{Reflist, 30em Nanoparticles by composition Ceramic engineering Ceramic materials