Cellular waste products are formed as a by-product of
cellular respiration
Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cell ...
, a series of processes and reactions that generate energy for the cell, in the form of
ATP. One example of cellular respiration creating cellular waste products are
aerobic respiration
Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellu ...
and
anaerobic respiration
Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain.
In aerobic organisms undergoing ...
.
Each pathway generates different waste products.
Aerobic respiration
When in the presence of oxygen, cells use aerobic respiration to obtain energy from
glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
molecules.
Simplified Theoretical Reaction: C
6H
12O
6 (aq) + 6O
2 (g) → 6CO
2 (g) + 6H
2O
(l) + ~ 30ATP
Cells undergoing aerobic respiration produce 6 molecules of
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
, 6 molecules of
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
, and up to 30 molecules of ATP (
adenosine triphosphate
Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
), which is directly used to produce energy, from each molecule of glucose in the presence of surplus oxygen.
In aerobic respiration, oxygen serves as the recipient of electrons from the
electron transport chain
An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
. Aerobic respiration is thus very efficient because oxygen is a strong
oxidant
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "Electron acceptor, accepts"/"receives" an electron from a (called the , , or ''electr ...
.
Aerobic respiration proceeds in a series of steps, which also increases efficiency - since glucose is broken down gradually and ATP is produced as needed, less energy is wasted as heat. This strategy results in the waste products H
2O and CO
2 being formed in different amounts at different phases of respiration. CO
2 is formed in
Pyruvate decarboxylation, H
2O is formed in
oxidative phosphorylation
Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
, and both are formed in the
citric acid cycle
The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
.
The simple nature of the final products also indicates the efficiency of this method of respiration. All of the energy stored in the carbon-carbon bonds of glucose is released, leaving CO
2 and H
2O. Although there is energy stored in the bonds of these molecules, this energy is not easily accessible by the cell. All usable energy is efficiently extracted.
Anaerobic respiration
Anaerobic respiration is done by aerobic organisms when there is not sufficient oxygen in a cell to undergo aerobic respiration as well as by cells called
anaerobes that selectively perform anaerobic respiration even in the presence of oxygen.
In anaerobic respiration, weak oxidants like
sulfate
The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
and
nitrate
Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
serve as oxidants in the place of oxygen.
Generally, in anaerobic respiration sugars are broken down into carbon dioxide and other waste products that are dictated by the oxidant the cell uses. Whereas in aerobic respiration the oxidant is always oxygen, in anaerobic respiration it varies. Each oxidant produces a different waste product, such as nitrite, succinate, sulfide, methane, and acetate.
Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products.
Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.
Fermentation
Fermentation is another process by which cells can extract energy from glucose. It is not a form of cellular respiration, but it does generate ATP, break down glucose, and produce waste products.
Fermentation, like aerobic respiration, begins by breaking glucose into two
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic ...
molecules. From here, it proceeds using
endogenous
Endogeny, in biology, refers to the property of originating or developing from within an organism, tissue, or cell.
For example, ''endogenous substances'', and ''endogenous processes'' are those that originate within a living system (e.g. an ...
organic electron receptors, whereas cellular respiration uses
exogenous
In a variety of contexts, exogeny or exogeneity () is the fact of an action or object originating externally. It is the opposite of endogeneity or endogeny, the fact of being influenced from within a system.
Economics
In an economic model, an ...
receptors, such as oxygen in aerobic respiration and nitrate in anaerobic respiration. These varied organic receptors each generate different waste products.
Common products are lactic acid,
lactose
Lactose is a disaccharide composed of galactose and glucose and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from (Genitive case, gen. ), the Latin word for milk, plus the suffix ''-o ...
, hydrogen, and ethanol. Carbon dioxide is also commonly produced.
Fermentation occurs primarily in anaerobic conditions, although some organisms such as yeast use fermentation even when oxygen is plentiful.
Lactic Acid Fermentation
Simplified Theoretical Reaction: C
6H
12O
6 2C
3H
6O
3 + 2 ATP (120 kJ)
Lactic Acid Fermentation is commonly known as the process by which mammalian muscle cells produce energy in anaerobic environments, as in instances of great physical exertion, and is the simplest type of fermentation. It starts along the same pathway as aerobic respiration, but once glucose is converted to
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic ...
proceeds down one of two pathways and produces only two molecules of ATP from each molecule of glucose. In the homolactic pathway, it produces
lactic acid
Lactic acid is an organic acid. It has the molecular formula C3H6O3. It is white in the solid state and it is miscible with water. When in the dissolved state, it forms a colorless solution. Production includes both artificial synthesis as wel ...
as waste. In the heterolactic pathway, it produces lactic acid as well as
ethanol
Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
and carbon dioxide.
Lactic acid fermentation is relatively inefficient. The waste products lactic acid and ethanol have not been fully oxidized and still contain energy, but it requires the addition of oxygen to extract this energy.
Generally, lactic acid fermentation occurs only when aerobic cells are lacking oxygen. However, some aerobic mammalian cells will preferentially use lactic acid fermentation over aerobic respiration. This phenomenon is called the
Warburg effect and is found primarily in cancer cells. Muscles cells under great exertion will also use lactic acid fermentation to supplement aerobic respiration. Lactic acid fermentation is somewhat faster, although less efficient, than aerobic respiration, so in activities like sprinting it can help quickly provide needed energy to muscles.
Secretion and effects of waste products
Cellular respiration takes place in the
cristae
A crista (; : cristae) is a fold in the inner membrane of a mitochondrion. The name is from the Latin for ''crest'' or ''plume'', and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for che ...
of the
mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
within cells. Depending on the pathways followed, the products are dealt with in different ways.
CO
2 is excreted from the cell via
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
into the blood stream, where it is transported in three ways:
*Up to 7% is dissolved in its molecular form in
blood plasma
Blood plasma is a light Amber (color), amber-colored liquid component of blood in which blood cells are absent, but which contains Blood protein, proteins and other constituents of whole blood in Suspension (chemistry), suspension. It makes up ...
.
* About 70-80% is converted into hydrocarbonate ions,
* The remainder binds with
haemoglobin
Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobi ...
in red blood cells, is carried to the lungs, and exhaled.
H
2O also diffuses out of the cell into the bloodstream, from where it is excreted in the form of perspiration, water vapour in the breath, or
urine
Urine is a liquid by-product of metabolism in humans and many other animals. In placental mammals, urine flows from the Kidney (vertebrates), kidneys through the ureters to the urinary bladder and exits the urethra through the penile meatus (mal ...
from the
kidneys
In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and right in the retro ...
. Water, along with some dissolved solutes, are removed from blood circulation in the
nephrons
The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a Nephron#Renal tubule, renal tubule. The renal corpuscle consists of a tuft of capillary, capillaries called a glomer ...
of the kidney and eventually excreted as urine.
The products of fermentation can be processed in different ways, depending on the cellular conditions.
Lactic acid tends to accumulate in the muscles, which causes pain in the muscle and joint as well as fatigue. It also creates a gradient which induces water to flow out of cells and increases
blood pressure
Blood pressure (BP) is the pressure of Circulatory system, circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term ...
. Research suggests that lactic acid may also play a role in lowering levels of
potassium
Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
in the blood. It can also be converted back to pyruvate or converted back to glucose in the liver and fully metabolized by aerobic respiration.
[McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: Energy, nutrition, and human performance. Wolters Kluwer/Lippincott Williams & Wilkins Health. ]
See also
*
Aerobic respiration
Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellu ...
*
Lactic acid fermentation
Lactic acid fermentation is a metabolic process by which glucose or other hexose, six-carbon sugars (also, disaccharides of six-carbon sugars, e.g. sucrose or lactose) are converted into cellular energy and the metabolite lactic acid, lactate, w ...
References
{{reflist
Cell biology