Cell migration is a central process in the development and maintenance of
multicellular organism
A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism.
All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially un ...
s. Tissue formation during
embryonic development
An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
,
wound healing
Wound healing refers to a living organism's replacement of destroyed or damaged tissue by newly produced tissue.
In undamaged skin, the epidermis (surface, epithelial layer) and dermis (deeper, connective layer) form a protective barrier aga ...
and
immune response
An immune response is a reaction which occurs within an organism for the purpose of defending against foreign invaders. These invaders include a wide variety of different microorganisms including viruses, bacteria, parasites, and fungi which could ...
s all require the orchestrated movement of cells in particular directions to specific locations. Cells often migrate in response to specific external signals, including
chemical signals and
mechanical signals.
Errors during this process have serious consequences, including
intellectual disability
Intellectual disability (ID), also known as general learning disability in the United Kingdom and formerly mental retardation, Rosa's Law, Pub. L. 111-256124 Stat. 2643(2010). is a generalized neurodevelopmental disorder characterized by signif ...
,
vascular disease
Vascular disease is a class of diseases of the blood vessels – the arteries and veins of the circulatory system of the body. Vascular disease is a subgroup of cardiovascular disease. Disorders in this vast network of blood vessels can cause a ...
,
tumor formation and
metastasis
Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, ...
. An understanding of the mechanism by which cells migrate may lead to the development of novel therapeutic strategies for controlling, for example, invasive tumour cells.
Due to the highly viscous environment (low
Reynolds number), cells need to continuously produce forces in order to move. Cells achieve active movement by very different mechanisms. Many less complex prokaryotic organisms (and sperm cells) use
flagella
A flagellum (; ) is a hairlike appendage that protrudes from certain plant and animal sperm cells, and from a wide range of microorganisms to provide motility. Many protists with flagella are termed as flagellates.
A microorganism may have f ...
or
cilia
The cilium, plural cilia (), is a membrane-bound organelle found on most types of eukaryotic cell, and certain microorganisms known as ciliates. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike projecti ...
to propel themselves.
Eukaryotic
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
cell migration typically is far more complex and can consist of combinations of different migration mechanisms. It generally involves drastic changes in cell shape which are driven by the
cytoskeleton
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is comp ...
. Two very distinct migration scenarios are crawling motion (most commonly studied) and
blebbing
In cell biology, a bleb is a bulge of the plasma membrane of a cell, characterized by a spherical, bulky morphology. It is characterized by the decoupling of the cytoskeleton from the plasma membrane, degrading the internal structure of the cell, ...
motility.
[online]
/ref> A paradigmatic example of crawling motion is the case of fish epidermal keratocytes, which have been extensively used in research and teaching.
Cell migration studies
The migration of cultured cells
Cell culture or tissue culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. The term "tissue culture" was coined by American pathologist Montrose Thomas Burrows. This te ...
attached to a surface or in 3D is commonly studied using microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of mi ...
.
As cell movement is very slow, a few µm/minute, time-lapse microscopy
Time-lapse microscopy is time-lapse photography applied to microscopy.
Microscope image sequences are recorded and then viewed at a greater speed to
give an accelerated view of the microscopic process.
Before the introduction of the video tape r ...
videos are recorded of the migrating cells to
speed up the movement.
Such videos (Figure 1) reveal that the leading cell front is very active, with a characteristic behavior of successive contractions and expansions.
It is generally accepted that the leading front is the main motor that pulls the cell forward.
Common features
The processes underlying mammalian cell migration are believed to be consistent with those of (non- spermatozooic) locomotion. Observations in common include:
* cytoplasmic displacement at leading edge (front)
* laminar removal of dorsally-accumulated debris toward trailing edge (back)
The latter feature is most easily observed when aggregates of a surface molecule are cross-linked with a fluorescent antibody
An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and Viral disease, viruses. The antibody recognizes a unique m ...
or when small beads become artificially bound to the front of the cell.
Other eukaryotic cells are observed to migrate similarly. The amoeba Dictyostelium discoideum
''Dictyostelium discoideum'' is a species of soil-dwelling amoeba belonging to the phylum Amoebozoa, infraphylum Mycetozoa. Commonly referred to as slime mold, ''D. discoideum'' is a eukaryote that transitions from a collection of unicellular ...
is useful to researchers because they consistently exhibit chemotaxis in response to cyclic AMP
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
; they move more quickly than cultured mammalian cells; and they have a haploid genome that simplifies the process of connecting a particular gene product with its effect on cellular behaviour.
Molecular processes of migration
There are two main theories for how the cell advances its front edge: the cytoskeletal model and membrane flow model. It is possible that both underlying processes contribute to cell extension.
Cytoskeletal model (A)
Leading edge
Experimentation has shown that there is rapid actin
Actin is a protein family, family of Globular protein, globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in myofibril, muscle fibrils. It is found in essentially all Eukaryote, eukaryotic cel ...
polymerisation at the cell's front edge. This observation has led to the hypothesis that formation of actin filaments "push" the leading edge forward and is the main motile force for advancing the cell's front edge. In addition, cytoskeletal elements are able to interact extensively and intimately with a cell's plasma membrane.
Trailing edge
Other cytoskeletal components (like microtubules) have important functions in cell migration. It has been found that microtubules act as “struts” that counteract the contractile forces that are needed for trailing edge retraction during cell movement. When microtubules in the trailing edge of cell are dynamic, they are able to remodel to allow retraction. When dynamics are suppressed, microtubules cannot remodel and, therefore, oppose the contractile forces. The morphology of cells with suppressed microtubule dynamics indicate that cells can extend the front edge (polarized in the direction of movement), but have difficulty retracting their trailing edge. On the other hand, high drug concentrations, or microtubule mutations that depolymerize the microtubules, can restore cell migration but there is a loss of directionality. It can be concluded that microtubules act both to restrain cell movement and to establish directionality.
Membrane flow model (B)
The front of a migrating cell is also the site at which the membrane from internal membrane pools is returned to the cell surface at the end of the endocytic cycle. [ ] This suggests that extension of the leading edge occurs primarily by addition of membrane at the front of the cell. If so, the actin filaments that form there might stabilize the added membrane so that a structured extension, or lamella, is formed — rather than a bubble-like structure (or bleb) at its front. For a cell to move, it is necessary to bring a fresh supply of "feet" (proteins called integrins
Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
, which attach a cell to the surface on which it is crawling) to the front. It is likely that these feet are endocytosed toward the rear of the cell and brought to the cell's front by exocytosis, to be reused to form new attachments to the substrate.
In the case of ''Dictyostelium'' amoebae, three conditional temperature sensitive mutants which affect membrane recycling block cell migration at the restrictive (higher) temperature; they provide additional support for the importance of the endocytic cycle in cell migration. Furthermore, these amoebae move quite quickly — about one cell length in ~5 mins. If they are regarded as cylindrical (which is roughly true whilst chemotaxing), this would require them to recycle the equivalent of one cell surface area each 5 mins, which is approximately what is measured.
Mechanistic basis of amoeboid migration
Adhesive crawling is not the only migration mode exhibited by eukaryotic cells. Importantly, several cell types — ''Dictyostelium'' amoebae, neutrophil
Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
s, metastatic cancer cells and macrophages — have been found to be capable of adhesion-independent migration. Historically, the physicist E. M. Purcell theorized (in 1977) that under conditions of low Reynolds number fluid dynamics, which apply at the cellular scale, rearward surface flow could provide a mechanism for microscopic objects to swim forward. After some decades, experimental support for this model of cell movement was provided when it was discovered (in 2010) that amoeboid cells and neutrophils are both able to chemotax towards a chemo-attractant source whilst suspended in an isodense medium. It was subsequently shown, using optogenetics
Optogenetics is a biological technique to control the activity of neurons or other cell types with light. This is achieved by expression of light-sensitive ion channels, pumps or enzymes specifically in the target cells. On the level of indiv ...
, that cells migrating in an amoeboid fashion without adhesions exhibit plasma membrane flow towards the cell rear that may propel cells by exerting tangential forces on the surrounding fluid. Polarized trafficking of membrane-containing vesicles from the rear to the front of the cell helps maintain cell size. Rearward membrane flow was also observed in ''Dictyostelium discoideum'' cells. These observations provide strong support for models of cell movement which depend on a rearward cell surface membrane flow (Model B, above). Interestingly, the migration of supracellular clusters has also been found to be supported by a similar mechanism of rearward surface flow.
Collective biomechanical and molecular mechanism of cell motion
Based on some mathematical models, recent studies hypothesize a novel biological model for collective biomechanical and molecular mechanism of cell motion. It is proposed that microdomains weave the texture of cytoskeleton and their interactions mark the location for formation of new adhesion sites. According to this model, microdomain signaling dynamics organizes cytoskeleton and its interaction with substratum. As microdomains trigger and maintain active polymerization of actin filaments, their propagation and zigzagging motion on the membrane generate a highly interlinked network of curved or linear filaments oriented at a wide spectrum of angles to the cell boundary. It is also proposed that microdomain interaction marks the formation of new focal adhesion sites at the cell periphery. Myosin interaction with the actin network then generate membrane retraction/ruffling, retrograde flow, and contractile forces for forward motion. Finally, continuous application of stress on the old focal adhesion sites could result in the calcium-induced calpain activation, and consequently the detachment of focal adhesions which completes the cycle.
Polarity in migrating cells
Migrating cells have a polarity
Polarity may refer to:
Science
* Electrical polarity, direction of electrical current
* Polarity (mutual inductance), the relationship between components such as transformer windings
* Polarity (projective geometry), in mathematics, a duality of o ...
—a front and a back. Without it, they would move in all directions at once, i.e. spread. How this polarity is formulated at a molecular level inside a cell is unknown. In a cell that is meandering in a random way, the front can easily give way to become passive as some other region, or regions, of the cell form(s) a new front. In chemotaxing cells, the stability of the front appears enhanced as the cell advances toward a higher concentration of the stimulating chemical. From biophysical perspective, polarity was explained in terms of a gradient in inner membrane surface charge
Surface charge is a two-dimensional surface with non-zero electric charge. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge dis ...
between front regions and rear edges of the cell. This polarity is reflected at a molecular level by a restriction of certain molecules to particular regions of the inner cell surface. Thus, the phospholipid PIP3 and activated Rac and CDC42 are found at the front of the cell, whereas Rho GTPase and PTEN are found toward the rear.
It is believed that filamentous actins and microtubules are important for establishing and maintaining a cell's polarity. Drugs that destroy actin filaments have multiple and complex effects, reflecting the wide role that these filaments play in many cell processes. It may be that, as part of the locomotory process, membrane vesicles are transported along these filaments to the cell's front. In chemotaxing cells, the increased persistence of migration toward the target may result from an increased stability of the arrangement of the filamentous structures inside the cell and determine its polarity. In turn, these filamentous structures may be arranged inside the cell according to how molecules like PIP3 and PTEN are arranged on the inner cell membrane. And where these are located appears in turn to be determined by the chemoattractant signals as these impinge on specific receptors on the cell's outer surface.
Although microtubules have been known to influence cell migration for many years, the mechanism by which they do so has remained controversial. On a planar surface, microtubules are not needed for the movement, but they are required to provide directionality to cell movement and efficient protrusion of the leading edge. When present, microtubules retard cell movement when their dynamics are suppressed by drug treatment or by tubulin mutations.
Inverse problems in the context of cell motility
An area of research called inverse problem
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating th ...
s in cell motility has been established.
This approach is based on the idea that behavioral or shape changes of a cell bear information about the underlying mechanisms that generate these changes. Reading cell motion, namely, understanding the underlying biophysical and mechanochemical processes, is of paramount importance.
The mathematical models developed in these works determine some physical features and material properties of the cells locally through analysis of live cell image sequences and uses this information to make further inferences about the molecular structures, dynamics, and processes within the cells, such as the actin network, microdomains, chemotaxis, adhesion, and retrograde flow.
See also
* Cap formation
* Chemotaxis
* Collective cell migration Collective cell migration describes the movements of group of cells and the emergence of collective behavior from cell-environment interactions and cell-cell communication. Collective cell migration is an essential process in the lives of multicellu ...
* Durotaxis
* Endocytic cycle
* Mouse models of breast cancer metastasis
* Neurophilic
* Protein dynamics Proteins are generally thought to adopt unique structures determined by their amino acid sequences. However, proteins are not strictly static objects, but rather populate ensembles of (sometimes similar) conformations. Transitions between these stat ...
References
External links
Cell Migration Gateway
The Cell Migration Gateway is a comprehensive and regularly updated resource on cell migration
The Cytoskeleton and Cell Migration
A tour of images and videos by the J. V. Small lab in Salzburg and Vienna
{{DEFAULTSORT:Cell Migration
Cellular processes
Cell movement
Articles containing video clips