In
mathematics, a Castelnuovo surface is a
surface
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is t ...
of general type such that the
canonical bundle In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the ''n''th exterior power of the cotangent bundle Ω on ''V''.
Over the complex numbers, ...
is very ample and
such that ''c''
12 = 3''p
g'' − 7.
Guido Castelnuovo
Guido Castelnuovo (14 August 1865 – 27 April 1952) was an Italian mathematician. He is best known for his contributions to the field of algebraic geometry, though his contributions to the study of statistics and probability theory are also sign ...
proved that if the canonical bundle is very ample for a surface of general type then ''c''
12 ≥ 3''p
g'' − 7.
Construction
Invariants
References
*{{Citation , last1=Barth , first1=Wolf P. , last2=Hulek , first2=Klaus , last3=Peters , first3=Chris A.M. , last4=Van de Ven , first4=Antonius , title=Compact Complex Surfaces , publisher= Springer-Verlag, Berlin , series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. , isbn=978-3-540-00832-3 , mr=2030225 , year=2004 , volume=4
Algebraic surfaces
Complex surfaces