Caretaker genes encode products that stabilize the genome. Fundamentally, mutations in caretaker genes lead to
genomic instability.
Tumor cells
A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
arise from two distinct classes of genomic instability: mutational instability arising from changes in the nucleotide sequence of DNA and chromosomal instability arising from improper rearrangement of
chromosomes
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most importa ...
.
Changes in the
genome
A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
that allow uncontrolled cell proliferation or cell immortality are responsible for
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
. It is believed that the major changes in the genome that lead to cancer arise from mutations in
tumor suppressor gene
A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell (biology), cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results ...
s.
In 1997, Kinzler and
Bert Vogelstein grouped these cancer susceptibility genes into two classes: "caretakers" and "gatekeepers".
In 2004, a third classification of tumor suppressor genes was proposed by Franziska Michor,
Yoh Iwasa, and
Martin Nowak; "landscaper" genes.
In contrast to caretaker genes, gatekeeper genes encode gene products that act to prevent growth of potential cancer cells and prevent accumulation of mutations that directly lead to increased cellular proliferation.
The third classification of genes, the landscapers, encode products that, when mutated, contribute to the neoplastic growth of cells by fostering a stromal environment conducive to unregulated cell proliferation.
Genes in context
Pathways to cancer via the caretakers
The process of
DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
inherently places cells at risk of acquiring mutations. Thus, caretaker genes are vitally important to cellular health. Rounds of cell replication allow fixation of mutated genes into the
genome
A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
.
[ Caretaker genes provide genome stability by preventing the accumulation of these mutations.
Factors that contribute to genome stabilization include proper cell-cycle checkpoints, ]DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
repair pathways, and other actions that ensure cell survival following DNA damage. Specific DNA maintenance operations encoded by caretaker genes include nucleotide excision repair
Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. Intercalation (biochemistry), intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single ...
, base excision repair
Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from t ...
, non-homologous end joining
Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
recombination pathways, mismatch repair
DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of nucleobase, bases that can arise during DNA replication and Genetic recombination, recombination, as well as DNA repair, ...
pathways, and telomere
A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
metabolism.
Loss of function mutations in caretaker genes allow mutations in other genes to survive that can result in increased conversion of a normal cell to a neoplastic
A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
cell, a cell that; (1) divides more often than it should or (2) does not die when conditions warrant cell death. Thus, caretaker genes do not directly regulate cell proliferation. Instead, they prevent other mutations from surviving for example by slowing the cell division process to enable DNA repair to complete, or by initiating apoptosis
Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
of the cell. In genetic knock-out and rescue experiments, restoration of a caretaker gene from the mutated form to the wildtype version does not limit tumorigenesis.[Hainut, P. 2005. ‘‘25 years of p53 research.’’ New York: Springer Publishing.] This is because caretaker genes only indirectly contribute to the pathway to cancer.
Cells deficient in a DNA repair
DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
process tend to accumulate unrepaired DNA damages. Cells defective in apoptosis
Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
tend to survive even with excessive DNA damage, thus permitting replication of the damaged DNA and consequently carcinogenic mutation
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
s. Some key caretaker proteins that contribute to cell survival by acting in DNA repair processes when the level of damage is manageable, become executioners by inducing apoptosis when there is excess DNA damage.
Inactivation of caretaker genes is environmentally equivalent to exposing the cell to mutagens incessantly. For example, a mutation in a caretaker gene coding for a DNA repair pathway that leads to the inability to properly repair DNA damage could allow uncontrolled cell growth. This is the result of mutations of other genes that accumulate unchecked as a result of faulty gene products encoded by the caretakers.
In addition to providing genomic stability, caretakers also provide chromosomal stability. Chromosomal instability resulting from dysfunctional caretaker genes is the most common form of genetic instability that leads to cancer in humans. In fact, it has been proposed that these caretaker genes are responsible for many hereditary predispositions to cancers.
In individuals predisposed to cancer via mutations in caretaker genes, a total of three subsequent somatic mutation
A somatic mutation is a change in the DNA sequence of a somatic cell of a multicellular organism with dedicated reproductive cells; that is, any mutation that occurs in a cell other than a gamete, germ cell, or gametocyte. Unlike germline muta ...
s are required to acquire the cancerous phenotype. Mutations must occur in the remaining normal caretaker allele in addition to both alleles of gatekeeper genes within that cell for the said cell to turn to neoplasia. Thus, the risk of cancer in these affected populations is much less when compared to cancer risk in families predisposed to cancer via the gatekeeper pathway.
Pathways to cancer via the gatekeepers
In many cases, gatekeeper genes encode a system of checks and balances that monitor cell division
Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
and death.[ When tissue damage occurs, for example, products of gatekeeper genes ensure that balance of cell growth over cellular death remains in check.] In the presence of competent gatekeeper genes, mutations of other genes do not lead to on-going growth imbalances.
Mutations altering these genes lead to irregular growth regulation and differentiation. Each cell type has only one, or at least only very few, gatekeeper genes. If a person is predisposed to cancer, they have inherited a mutation in one of two copies of a gatekeeper gene. Mutation of the alternate allele leads to progression to neoplasia.
Historically, the term gatekeeper gene was first coined in association with the APC gene
Adenomatous polyposis coli (APC) also known as deleted in polyposis 2.5 (DP2.5) is a protein that in humans is encoded by the ''APC'' gene. The APC protein is a negative regulator that controls beta-catenin concentrations and interacts with E- ...
, a tumor suppressor that is consistently found to be mutated in colorectal tumors. Gatekeeper genes are in fact specific to the tissues in which they reside.
The probability that mutations occur in other genes increases when DNA repair pathway mechanisms are damaged as a result of mutations in caretaker genes. Thus, the probability that a mutation will take place in a gatekeeper gene increases when the caretaker gene has been mutated.[Yarbro, C., M. Goodman, and M Frogge. ‘‘Cancer Nursing: Principles and Practice.’’ Jones and Bartlett: 2005.]
Apoptosis
Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
, or induced cell suicide, usually serves as a mechanism to prevent excessive cellular growth. Gatekeeper genes regulate apoptosis. However, in instances where tissue growth or regrowth is warranted, these signals must be inactivated or net tissue regeneration would be impossible. Thus, mutations in growth-controlling genes would lead to the characteristics of uncontrolled cellular proliferation, neoplasia, while in a parallel cell that had no mutations in the gatekeeper function, simple cell death would ensue.
Pathways to cancer via the landscapers
A third group of genes in which mutations lead to a significant susceptibility to cancer is the class of landscaper genes. Products encoded by landscaper genes do not directly affect cellular growth, but when mutated, contribute to the neoplastic growth of cells by fostering stromal environments conducive to unregulated cell proliferation
Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation ...
.
Landscaper genes encode gene products that control the microenvironment in which cells grow. Growth of cells depends both on cell-to-cell interactions and cell-to-extracellular matrix
In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
(ECM) interactions. Mechanisms of control via regulation of extracellular matrix proteins
In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bi ...
, cellular surface markers, cellular adhesion molecules, and growth factors
A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regu ...
have been proposed.
Cells communicate with each other via the ECM through both direct contact and through signaling molecules. Stromal cell abnormalities arising from gene products coded by faulty landscaper genes could induce abnormal cell growth on the epithelium
Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
, leading to cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
of that tissue.
Biochemical cascades consisting of signaling proteins occur in the ECM and play an important role to the regulation of many aspects of cell life. Landscaper genes encode products that determine the composition of the membranes in which cells live. For example, large molecular weight glycoproteins
Glycoproteins are proteins which contain oligosaccharide (sugar) chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known a ...
and proteoglycans
Proteoglycans are proteins that are heavily glycosylation, glycosylated. The basic proteoglycan unit consists of a "core protein" with one or more covalent bond, covalently attached glycosaminoglycan (GAG) chain(s). The point of attachment is a ...
have been found to in association with signaling and structural roles. There exist proteolytic molecules in the ECM that are essential for clearing unwanted molecules, such as growth factors, cell adhesion molecules, and others from the space surrounding cells. It is proposed that landscaper genes control the mechanisms by which these factors are properly cleared. Different characteristics of these membranes lead to different cellular effects, such as differing rates of cell proliferation or differentiation. If, for example, the ECM is disrupted, incoming cells, such as those of the immune system, can overload the area and release chemical signals that induce abnormal cell proliferation
Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation ...
. These conditions lead to an environment conducive to tumor
A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
growth and the cancerous phenotype.
Gatekeepers, caretakers, and cellular aging
Because mechanisms that control the accumulation of damage through the lifetime of a cell are essential to longevity, it is logical that caretaker and gatekeeper genes play a significant role in cellular aging. Increased activity of caretaker genes postpones aging, increasing lifespan. This is because of the regulatory function associated with caretaker genes in maintaining the stability of the genome. The actions of caretaker genes contribute to increasing lifespan of the cell.
A specific purpose of caretaker genes has been outlined in chromosomal duplication. Caretakers have been identified as crucial to encoding products that maintain the telomeres. It is believed that degradation of telomeres, the ends of chromosomes, through repeated cell cycle divisions, is a main component of cellular aging and death.
It has been suggested that gatekeeper genes confer beneficial anti-cancer affects but may provide deleterious effects that increase aging. This is because young organisms experiencing times of rapid growth necessitate significant anti-cancer mechanisms. As the organism ages, however, these formerly beneficial pathways become deleterious by inducing apoptosis in cells of renewable tissues, causing degeneration of the structure. Studies have shown an increased expression of pro-apoptotic genes in age-related pathologies. This is because the products of gatekeeper genes are directly involved in coding for cellular growth and proliferation.
However, dysfunctional caretaker genes do not always lead to a cancerous phenotype. For example, defects in nucleotide excision repair pathways are associated with premature aging phenotypes in diseases such as Xeroderma pigmentosum
Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in su ...
and Trichothiodystrophy. These patients exhibit brittle hair, nails, scaly skin, and hearing loss – characteristics associated with simple human aging. This is important because the nucleotide excision repair pathway is a mechanism thought to be encoded by a caretaker gene. Geneticists studying these premature-aging syndromes propose that caretaker genes that determine cell fate also play a significant role in aging. Accumulation of DNA damage with age may be especially prevalent in the central nervous system because of low DNA repair capability in postmitotic brain
The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
tissue.
Similarly, gatekeeper genes have been identified as having a role in aging disorders that exhibit mutations in such genes without an increased susceptibility to cancer. Experiments with mice that have increased gatekeeper function in the p53 gene show reduced cancer incidence (due to the protective activities of products encoded by p53) but a faster rate of aging.
Cellular senescence
Senescence () or biological aging is the gradual deterioration of Function (biology), functional characteristics in living organisms. Whole organism senescence involves an increase in mortality rate, death rates or a decrease in fecundity with ...
, also encoded by a gatekeeper gene, is arrest of the cell cycle in the G1 phase. Qualitative differences have been found between senescent cells and normal cells, including differential expression of cytokines and other factors associated with inflammation. It is believed that this may contribute, in part, to cellular aging.
In sum, although mechanisms encoded by gatekeeper and caretaker genes to protect individuals from cancer early in life, namely induction of apoptosis or senescence, later in life these functions may promote the aging phenotype.
Mutations in context
It has been proposed that mutation
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
s in gatekeeper genes could, to an extent, offer a sort of selective advantage to the individual in which the change occurs. This is because cells with these mutations are able to replicate at a faster rate than nearby cells. This is known as "increased somatic fitness". Caretaker genes, on the other hand, confer selective disadvantage because the result is inherently decreased cellular success. However, increased somatic fitness could also arise from a mutation in a caretaker gene if mutations in tumor suppressor genes increase the net reproductive rate of the cell.
Although mutations in gatekeeper genes may lead to the same result as those of caretaker genes, namely cancer, the transcripts that gatekeeper genes encode are significantly different from those encoded by caretaker genes.
In many cases, gatekeeper genes encode a system of checks and balances that monitor cell division and death. In cases of tissue damage, for example, gatekeeper genes would ensure that balance of cell growth over cellular death remains in check. In the presence of competent gatekeeper genes, mutations of other genes would not lead to on-going growth imbalances.
Whether or not mutations in these genes confer beneficial or deleterious effects to the animal depends partially on the environmental context in which these changes occur, a context encoded by the landscaper genes. For example, tissues of the skin and colon reside in compartments of cells that rarely mix with one another. These tissues are replenished by stem cells
In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell ...
. Mutations that occur within these cell lineages remain confined to the compartment in which they reside, increasing the future risk of cancer. This is also protective, however, because the cancer will remain confined to that specific area, rather than invading the rest of the body, a phenomenon known as metastasis
Metastasis is a pathogenic agent's spreading from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, ...
.
In areas of the body compartmentalized into small subsets of cells, mutations that lead to cancer most often begin with caretaker genes. On the other hand, cancer progression in non-compartmentalized or large cell populations may be a result of initial mutations in gatekeepers.
These delineations offer a suggestion why different types of tissue within the body progress to cancer by differing mechanisms.
Notes
Although the classification of tumor suppressor genes into these categories is helpful to the scientific community, the potential role of many genes cannot be reliably identified as the functions of many genes are rather ill-defined. In some contexts, genes exhibit discrete caretaker function while in other situations gatekeeper characteristics are recognized. An example of one such gene is p53. Patients with Li-Fraumeni syndrome, for example, have mutations in the p53 gene that suggest caretaker function. p53 has an identified role, however, in regulating the cell cycle as well, which is an essential gatekeeper function.
Sources
{{DEFAULTSORT:Caretaker Gene
Gene expression