HOME

TheInfoList



OR:

The cardiac conduction system (CCS) (also called the electrical conduction system of the heart) transmits the signals generated by the sinoatrial node – the heart's
pacemaker An artificial cardiac pacemaker (or artificial pacemaker, so as not to be confused with the natural cardiac pacemaker) or pacemaker is a medical device that generates electrical impulses delivered by electrodes to the chambers of the heart eith ...
, to cause the heart muscle to contract, and pump blood through the body's circulatory system. The pacemaking signal travels through the right atrium to the atrioventricular node, along the bundle of His, and through the
bundle branches The bundle branches, or Tawara branches, are offshoots of the bundle of His in the heart's ventricle. They play an integral role in the electrical conduction system of the heart by transmitting cardiac action potentials from the bundle of His to ...
to
Purkinje fiber The Purkinje fibers (; often incorrectly ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, just beneath the endocardium in a space called the subendocardium. The Purkinje fibers are specia ...
s in the walls of the ventricles. The Purkinje fibers transmit the signals more rapidly to stimulate contraction of the ventricles. The conduction system consists of specialized heart muscle cells, situated within the
myocardium Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that ...
. There is a skeleton of fibrous tissue that surrounds the conduction system which can be seen on an ECG. Dysfunction of the conduction system can cause irregular heart rhythms including rhythms that are too fast or too slow.


Structure

Electrical signals arising in the SA node (located in the right atrium) stimulate the atria to contract. Then the signals travel to the atrioventricular node (AV node), which is located in the interatrial septum. After a short delay that gives the ventricles time to fill with blood, the electrical signal diverges and is conducted through the left and right
bundle branches The bundle branches, or Tawara branches, are offshoots of the bundle of His in the heart's ventricle. They play an integral role in the electrical conduction system of the heart by transmitting cardiac action potentials from the bundle of His to ...
of His to the respective Purkinje fibers for each side of the heart, as well as to the endocardium at the apex of the heart, then finally to the ventricular epicardium; causing the ventricles to contract.These signals are generated rhythmically, which results in the coordinated rhythmic contraction and relaxation of the heart. On the microscopic level, the wave of depolarization propagates to adjacent cells via
gap junction Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regulate ...
s located on the intercalated disc. The heart is a functional syncytium as opposed to a skeletal muscle syncytium. In a functional syncytium, electrical impulses propagate freely between cells in every direction, so that the myocardium functions as a single contractile unit. This property allows rapid, synchronous depolarization of the myocardium. While advantageous under normal circumstances, this property can be detrimental, as it has potential to allow the propagation of incorrect electrical signals. These gap junctions can close to isolate damaged or dying tissue, as in a myocardial infarction (heart attack).


Development

Embryologic evidence of generation of the cardiac conduction system illuminates the respective roles of this specialized set of cells. Innervation of the heart begins with a brain only centered
parasympathetic The parasympathetic nervous system (PSNS) is one of the three divisions of the autonomic nervous system, the others being the sympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of t ...
cholinergic first order. It is then followed by rapid growth of a second order sympathetic adrenergic system arising from the formation of the thoracic spinal ganglia. The third order of electrical influence of the heart is derived from the vagus nerve as the other peripheral organs form.


Function


Action potential generation

Cardiac muscle has some similarities to neurons and skeletal muscle, as well as important unique properties. Like a neuron, a given myocardial cell has a negative
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
when at rest. Stimulation above a threshold value induces the opening of
voltage-gated ion channel Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in the electrical membrane potential near the channel. The membrane potential alters the conformation of the channel proteins, ...
s and a flood of cations into the cell. The positively charged ions entering the cell cause the depolarization characteristic of an action potential. Like skeletal muscle, depolarization causes the opening of voltage-gated calcium channels and release of Ca2+ from the t-tubules. This influx of calcium causes calcium-induced calcium release from the sarcoplasmic reticulum, and free Ca2+ causes muscle contraction. After a delay, potassium channels reopen, and the resulting flow of K+ out of the cell causes repolarization to the resting state. There are important physiological differences between nodal cells and ventricular cells; the specific differences in ion channels and mechanisms of polarization give rise to unique properties of SA node cells, most importantly the spontaneous depolarizations necessary for the SA node's pacemaker activity.


Requirements for effective pumping

In order to maximize efficiency of contractions and
cardiac output In cardiac physiology, cardiac output (CO), also known as heart output and often denoted by the symbols Q, \dot Q, or \dot Q_ , edited by Catherine E. Williamson, Phillip Bennett is the volumetric flow rate of the heart's pumping output: t ...
, the conduction system of the heart has: * Substantial atrial to ventricular delay. ''This will allow the atria to completely empty their contents into the ventricles; simultaneous contraction would cause inefficient filling and backflow. The atria are electrically isolated from the ventricles, connected only via the AV node which briefly delays the signal.'' * Coordinated contraction of ventricular cells. ''The ventricles must maximize
systolic Systole ( ) is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood. The term originates, via New Latin, from Ancient Greek (''sustolē''), from (''sustéllein'' 'to contract'; from ''sun ...
pressure to force blood through the circulation, so all the ventricular cells must work together.'' ** Ventricular contraction begins at the apex of the heart, progressing upwards to eject blood into the great arteries. ''Contraction that squeezes blood towards the exit is more efficient than a simple squeeze from all directions. Although the ventricular stimulus originates from the AV node in the wall separating the atria and ventricles, the Bundle of His conducts the signal to the apex.'' ** Depolarization propagates through cardiac muscle very rapidly. ''Cells of the ventricles contract nearly simultaneously.'' ** The action potentials of cardiac muscle are unusually sustained. ''This prevents premature relaxation, maintaining initial contraction until the entire myocardium has had time to depolarize and contract.'' * Absence of tetany. ''After contracting, the heart must relax to fill up again. Sustained contraction of the heart without relaxation would be fatal, and this is prevented by a temporary'' inactivation ''of certain ion channels.''


Electrical activity

An electrocardiogram is a recording of the electrical activity of the heart.


SA node: P wave

Under normal conditions, electrical activity is spontaneously generated by the SA node, the cardiac pacemaker. This electrical impulse is propagated throughout the right atrium, and through
Bachmann's bundle In the heart's conduction system, Bachmann's bundle (also called the Bachmann bundle or the interatrial band) is a branch of the anterior internodal tract that resides on the inner wall of the left atrium. It is a broad band of cardiac muscle th ...
to the left atrium, stimulating the
myocardium Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that ...
of the atria to contract. The conduction of the electrical impulses throughout the atria is seen on the ECG as the P wave. As the electrical activity is spreading throughout the atria, it travels via specialized pathways, known as ''internodal tracts'', from the SA node to the AV node.


AV node and bundles: PR interval

The AV node functions as a critical delay in the conduction system. Without this delay, the atria and ventricles would contract at the same time, and blood wouldn't flow effectively from the atria to the ventricles. The delay in the AV node forms much of the PR segment on the ECG, and part of atrial repolarization can be represented by the PR segment. The distal portion of the AV node is known as the bundle of His. The bundle of His splits into two branches in the interventricular septum: the left bundle branch and the right bundle branch. The left bundle branch activates the left ventricle, while the right bundle branch activates the right ventricle. The left bundle branch is short, splitting into the left anterior fascicle and the left posterior fascicle. The left posterior fascicle is relatively short and broad, with dual blood supply, making it particularly resistant to ischemic damage. The left posterior fascicle transmits impulses to the papillary muscles, leading to
mitral valve The mitral valve (), also known as the bicuspid valve or left atrioventricular valve, is one of the four heart valves. It has two cusps or flaps and lies between the left atrium and the left ventricle of the heart. The heart valves are all one-w ...
closure. As the left posterior fascicle is shorter and broader than the right, impulses reach the papillary muscles just prior to depolarization, and therefore contraction, of the left ventricle myocardium. This allows pre-tensioning of the chordae tendinae, increasing the resistance to flow through the mitral valve during left ventricular contraction. This mechanism works in the same manner as pre-tensioning of car seatbelts.


Purkinje fibers/ventricular myocardium: QRS complex

The two bundle branches taper out to produce numerous Purkinje fibers, which stimulate individual groups of myocardial cells to contract. The spread of electrical activity through the ventricular myocardium produces the QRS complex on the ECG. Atrial repolarization occurs and is masked during the QRS complex by ventricular depolarization on the ECG.


Ventricular repolarization

The last event of the cycle is the repolarization of the ventricles. It is the restoring of the resting state. In the ECG, repolarization includes the J point, ST segment, and T and U waves. The transthoracically measured PQRS portion of an electrocardiogram is chiefly influenced by the
sympathetic nervous system The sympathetic nervous system (SNS) is one of the three divisions of the autonomic nervous system, the others being the parasympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of th ...
. The T (and occasionally U) waves are chiefly influenced by the
parasympathetic nervous system The parasympathetic nervous system (PSNS) is one of the three divisions of the autonomic nervous system, the others being the sympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of ...
guided by integrated
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is cont ...
control from the vagus nerve and the thoracic
spinal accessory ganglia The spinal accessory nucleus lies within the cervical spinal cord (C1-C5) in the posterolateral aspect of the anterior horn. The nucleus ambiguus is classically said to provide the "cranial component" of the accessory nerve. However, the very exist ...
. An impulse ( action potential) that originates from the SA node at a relative rate of 60-100 bpm is known as a normal sinus rhythm. If SA nodal impulses occur at a rate less than 60 bpm, the heart rhythm is known as sinus bradycardia. If SA nodal impulses occur at a rate exceeding 100bpm, the consequent rapid heart rate is sinus tachycardia. These conditions are not necessarily bad symptoms, however. Trained athletes, for example, usually show heart rates slower than 60bpm when not exercising. If the SA node fails to initialize, the AV junction can take over as the main pacemaker of the heart. The AV junction consists of the AV node, the bundle of His, and the surrounding area; it has a regular rate of 40 to 60bpm. These "junctional" rhythms are characterized by a missing or inverted P wave. If both the SA node and the AV junction fail to initialize the electrical impulse, the ventricles can fire the electrical impulses themselves at a rate of 20 to 40 bpm and will have a QRS complex of greater than 120 ms. This is necessary for the heart to be in good function.


Clinical significance


Arrhythmia

An
arrhythmia Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults ...
is an abnormal rhythm or speed of rhythm of the heartbeat. A slow heart rate of 60 or less beats per minute is defined as
bradycardia Bradycardia (also sinus bradycardia) is a slow resting heart rate, commonly under 60 beats per minute (BPM) as determined by an electrocardiogram. It is considered to be a normal heart rate during sleep, in young and healthy or elderly adults, a ...
. A fast heart rate of more than 100 beats per minute is defined as tachycardia. An arrythmia is defined as one that is not
physiological Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemical ...
such as the lowered heart rate that a trained athlete may naturally have developed; the resting heart rates may be less that 60 bpm. When an arrhythmia cannot be treated by medication an artificial pacemaker may be implanted to control the conduction system.


See also

* Impedance cardiography * Intraventricular block *
Stannius ligature The Stannius Ligature was an experimental procedure that robustly illustrated impulse conduction in the frog heart. This procedure decisively demonstrated that the Sinoatrial Node is the intrinsic origin pacemaker of the heart. A ligature placed eit ...


References

{{Authority control Cardiac electrophysiology