In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a canonical basis is a basis of an
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
that is canonical in a sense that depends on the precise context:
* In a
coordinate space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
, and more generally in a
free module
In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commu ...
, it refers to the
standard basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors, each of whose components are all zero, except one that equals 1. For exampl ...
defined by the
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
.
* In a polynomial ring, it refers to its standard basis given by the
monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
# A monomial, also called a power product or primitive monomial, is a product of powers of variables with n ...
s,
.
* For finite extension fields, it means the
polynomial basis.
* In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, it refers to a set of ''n'' linearly independent
generalized eigenvector
In linear algebra, a generalized eigenvector of an n\times n matrix A is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector.
Let V be an n-dimensional vector space and let A be the matrix r ...
s of an ''n''×''n'' matrix
, if the set is composed entirely of
Jordan chains.
* In
representation theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
, it refers to the basis of the
quantum groups introduced by Lusztig.
Representation theory
The canonical basis for the irreducible representations of a quantized enveloping algebra of
type
and also for the plus part of that algebra was introduced by Lusztig by
two methods: an algebraic one (using a braid group action and PBW bases) and a topological one
(using intersection cohomology). Specializing the parameter
to
yields a canonical basis for the irreducible representations of the corresponding simple Lie algebra, which was
not known earlier. Specializing the parameter
to
yields something like a shadow of a basis. This shadow (but not the basis itself) for the case of irreducible representations
was considered independently by Kashiwara; it is sometimes called the
crystal basis.
The definition of the canonical basis was extended to the Kac-Moody setting by Kashiwara (by an algebraic method) and by Lusztig (by a topological method).
There is a general concept underlying these bases:
Consider the ring of integral
Laurent polynomials