HOME

TheInfoList



OR:

In
artillery Artillery consists of ranged weapons that launch Ammunition, munitions far beyond the range and power of infantry firearms. Early artillery development focused on the ability to breach defensive walls and fortifications during sieges, and l ...
, caliber or calibre''Caliber'' is the
American English American English, sometimes called United States English or U.S. English, is the set of variety (linguistics), varieties of the English language native to the United States. English is the Languages of the United States, most widely spoken lang ...
spelling, while ''calibre'' is used in
British English British English is the set of Variety (linguistics), varieties of the English language native to the United Kingdom, especially Great Britain. More narrowly, it can refer specifically to the English language in England, or, more broadly, to ...
.
is the internal diameter of a gun barrel, or, by extension, a relative measure of the barrel length.


Rifled barrels

Rifled barrels introduce ambiguity to measurement of caliber. A rifled bore consists of alternating grooves and lands. The distance across the bore from groove to groove is greater than the distance from land to land. Projectiles fired from rifled barrels must be of the full groove-to-groove diameter to be effectively rotated by the rifling, but the caliber has sometimes been specified as the land-to-land diameter before rifling grooves were cut. The depth of rifling grooves (and the consequent ambiguity) increases in larger calibers. Steel artillery projectiles may have a forward bourrelet section machined to a diameter slightly smaller than the original land-to-land dimension of the barrel and a
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
driving band somewhat larger than the groove-to-groove diameter to effectively seal the bore as it becomes enlarged by erosion during prolonged firing.
United States Navy The United States Navy (USN) is the naval warfare, maritime military branch, service branch of the United States Department of Defense. It is the world's most powerful navy with the largest Displacement (ship), displacement, at 4.5 millio ...
guns typically used rifling depth between one-half and one percent of caliber. Projectile bourrelet diameter specification was less than land-to-land diameter with a minus manufacturing tolerance, so average clearance was about . Driving band diameter was groove-to-groove diameter plus .


Barrel length

The length of the barrel (especially for larger guns) is often quoted in multiples of the caliber, used, for example, in US naval rifles or larger. The effective length of the barrel (from breech to muzzle) is divided by the barrel diameter to give a
dimensionless Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another sy ...
quantity. For example, the main guns of the s can be referred to as 16"/50 caliber. They are 16inches in diameter and the barrel is 800inches long (16 × 50 = 800). This is also sometimes indicated using the prefix L/; so for example, the most common gun for the Panzer V tank is described as a "75 mm L/70," meaning a barrel with an internal bore of , and long. The bore to barrel length ratio is called "caliber" in naval gunnery, but is called "length" in army artillery. Before World War II, the US Navy used 5"/51 caliber (5" L/51) as surface-to-surface guns and 5"/25 caliber (5" L/25) as surface to air guns. By the end of World War II, the dual purpose 5-inch/38-caliber gun (5" L/38) was standard naval armament against surface and air targets. All three had a bore diameter of 5inches (not 5.51 or 5.25 or 5.38 as often misread). Naval rifles, although constructed and manufactured in roughly the same manners as land-based artillery, were built to much more stringent and studious standards than land-based weapons, and for good reason. At sea, a weapon had to perform, without fail. There was no ready replacement, nor one that could be readily supplied. Over time, the terms of pound (weight of
shell Shell may refer to: Architecture and design * Shell (structure), a thin structure ** Concrete shell, a thin shell of concrete, usually with no interior columns or exterior buttresses Science Biology * Seashell, a hard outer layer of a marine ani ...
) and bore (the actual bore of the weapon) became confused and blurred. Eventually, when the technology existed, the bore (in inches or millimetres) came to be the standard measure.FTP-45 (General Fleet Tactics 1924)FTP-188 (General Fleet Tactics 1940) For naval rifles, the initial change was to actual bore, thus facilitating the manufacture of standard projectiles. They then began to measure the effective length (and therefore range) of the weapon in calibers. These are a measure of the standardized length of the barrel versus the rifled bore of the barrel. In other words, a 12/45 is 12"×45= the length of the rifled bore of that gun in inches. This explains the differences in both penetration and long range performance of various naval rifles over the years. In addition to the possible improvements in overall performance (i.e. muzzle velocity and striking force), the increase in barrel length also allowed, in some circumstances, an increase in projectile size as well. For example, the American 14/45, as introduced in the s, fired a projectile. Later improvements to the design, lengthening the rifle itself and also altering the breech, allowed a projectile and, overall, a greater barrel life. Again we see this pattern with the US 16" guns. The initial design was 45 calibers in length and fired a shell. The later re-design to 50 calibre not only allowed a higher velocity, but also a heavier shell, which ultimately came to be accepted as the greatest US naval shell deployed in combat. Early gun barrels were short and thick, typically no more than 26 calibers, as the
gunpowder Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, charcoal (which is mostly carbon), and potassium nitrate, potassium ni ...
propellant they used burned very quickly and violently, and hence its acceleration time was short. Slower-burning " brown powder" formulations of gunpowder allowed gun barrel length to increase slightly in the 1880s, but enormous quantities of brown powder were required. New slower-burning "
smokeless powder Finnish smokeless powder Smokeless powder is a type of propellant used in firearms and artillery that produces less smoke and less fouling when fired compared to black powder. Because of their similar use, both the original black powder formula ...
" propellants available from the mid-1880s onwards, such as Poudre B,
cordite Cordite is a family of smokeless propellants developed and produced in Britain since 1889 to replace black powder as a military firearm propellant. Like modern gunpowder, cordite is classified as a low explosive because of its slow burni ...
and
nitrocellulose Nitrocellulose (also known as cellulose nitrate, flash paper, flash cotton, guncotton, pyroxylin and flash string, depending on form) is a highly flammable compound formed by nitrating cellulose through exposure to a mixture of nitric acid and ...
allowed a gentler prolonged acceleration, hence gun barrels were made progressively longer and thinner. The new formulations were far more powerful propellants than gunpowder and far less was needed by weight as they transformed almost entirely to gases when burned. Muzzle velocity became limited only by the length of barrel that was feasible, both in terms of the construction methods of the day and in terms of any practical constraints imposed by the gun's manner of use. The practical effect of long barrels for modern guns is that the projectile spends more time in the barrel before it exits, and hence more time is available for expanding gas from the controlled burning of the propellant charge to smoothly accelerate the projectile, bringing about a higher velocity without placing undue strain on the gun. In
internal ballistics Internal ballistics (also interior ballistics), a subfield of ballistics, is the study of the propulsion of a projectile. In guns, internal ballistics covers the time from the propellant's ignition until the projectile exits the gun barrel. The s ...
terms, if the base of a projectile is thought of as a piston propelled by the expanding gas, then as barrel length increases the volume swept by the piston also increases, and hence the amount of energy that can be extracted from the gas's burning increases. A longer barrel allows more propellant to be used: the propellant is all burned fairly early in the projectile's journey along the barrel, except in the very common instance where combustion is still occurring as the projectile leaves the muzzle and a visible muzzle "flash" is produced. The projectile continues to accelerate as long as the pressure behind it is sufficient to overcome bore friction. The excess energy will continue to accelerate the projectile until it exits the muzzle. If the pressure behind the projectile drops sufficiently before the projectile exits the bore, the projectile can and will slow while still within the barrel, despite residual bore pressure behind the projectile. A light charge with insufficient pressure to expel the projectile will result in a "squib", or projectile lodged in the bore. Canadian Army. B-GL-306-006/FP-001, 1992-06-01 This pressure is reduced by the increasing barrel volume the gas has to fill. In order to achieve maximum muzzle velocity with the shortest barrel length, the projectile should exit the barrel as the gas pressure reduces to a small fraction of the maximum, although unlike maximum chamber pressure, the small fraction desired is impossible to measure. In modern guns, increased muzzle velocities can be produced by altering powder composition and/or using duplex charges containing two different powders in order to extend the "pressure curve" further down the bore. By exposing the projectile base to a given pressure for a longer length of time, velocity can be increased without elevating the pressure level generated. Technological improvements had made it possible to introduce into use long gun barrels that are strong enough to withstand the forces involved in accelerating the shell to a high velocity, while remaining light enough to be reasonably mobile, rigid enough to maintain accuracy, and having a bore able to withstand many firings before needing refurbishment. In
World War I World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
45-caliber naval gun barrels were typical, in
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
50- to 55-caliber barrels were common, with Germany already manufacturing tank guns of 70 calibers by 1943. Today, 60- to 70-caliber barrels are not uncommon, but the latest technology has allowed shorter barrels of 55 calibers to attain muzzle velocities of , as with the Rheinmetall 120 mm tank gun. However, by using discarding sabots, many such guns fire projectiles which are much smaller than the gun bore, so the relationship of projectile size to barrel length is not as straightforward as with older ordnance.


Notes


References

;Citations {{Reflist ;Bibliography
Canada. Army Electronic Library. Field Artillery Volume 6. Ballistics and Ammunition. B-GL-306-006/FP-001 1992-06-01
Artillery ammunition Artillery components Measurement