Cadherins (named for "calcium-dependent adhesion") are a type of
cell adhesion molecule (CAM) that is important in the formation of
adherens junctions to allow cells to adhere to each other .
Cadherins are a class of type-1
transmembrane proteins, and they are dependent on
calcium (Ca
2+)
ions to function, hence their name. Cell-cell adhesion is mediated by extracellular cadherin domains, whereas the
intracellular cytoplasmic tail associates with numerous adaptors and signaling proteins, collectively referred to as the cadherin
adhesome The term Adhesome was first used by Richard Hynes to describe the complement of cell-cell and cell-matrix adhesion receptors in an organism and later expanded by Benny Geiger and co-workers to include the entire network of structural and signaling ...
.
The cadherin family is essential in maintaining the cell-cell contact and regulating cytoskeletal complexes. The cadherin superfamily includes cadherins,
protocadherins,
desmogleins,
desmocollins, and more.
In structure, they share ''cadherin repeats'', which are the extracellular Ca
2+-
binding domains. There are multiple classes of cadherin molecules, each designated with a prefix (in general, noting the types of tissue with which it is associated). Classical cadherins maintain the tone of tissues by forming a homodimer in cis while desmosomal cadherins are heterodimeric.
The intracellular portion of classical cadherins interacts with a complex of proteins that allows connection to the actin cytoskeleton. Although classical cadherins take a role in cell layer formation and structure formation, desmosomal cadherins focus on resisting cell damage. Desmosomal cadherins are responsible to maintain the function of desmosomes that is to overturn the mechanical stress of the tissues. Similar to classical cadherins, desmosomal cadherins have a single transmembrane domain, five EC repeats, and an intracellular domain. Two types of desmosomal cadherins exist, and they are called desmogleins and desmocollins that contain an intracellular anchor and cadherin like sequence (ICS). The adaptor proteins that associate with desmosomal cadherins are plakoglobin (related to
-catenin), plakophilins (p120 catenin subfamily), and desmoplakins. The major function of desmoplakins to bind to intermediate filament thorough interaction with plakoglobin that attaches to ICS of desmogleins and desmocollins and plakophilins.
Typical cadherins are different from other types of cadherins and consist of one or more extracellular repeat domains. The components that build an atypical cadherin are flamingo (seven pass transmembrane) and Dcad102F-like cadherins. Their job is to take part in signaling pathway instead of performing cell-cell adhesion.
It has been observed that cells containing a specific cadherin subtype tend to cluster together to the exclusion of other types, both in cell culture and during
development. For example, cells containing
N-cadherin tend to cluster with other N-cadherin-expressing cells. However, it has been noted that the mixing speed in the cell culture experiments can have an effect on the extent of homotypic specificity.
In addition, several groups have observed heterotypic binding affinity (i.e., binding of different types of cadherin together) in various assays.
One current model proposes that cells distinguish cadherin subtypes based on kinetic specificity rather than thermodynamic specificity, as different types of cadherin homotypic bonds have different lifetimes.
Structure

Cadherins are synthesized as polypeptides and undergo many post-translational modifications to become the proteins which mediate cell-cell adhesion and recognition. These polypeptides are approximately 720–750 amino acids long. Each cadherin has a small C-terminal cytoplasmic component, a transmembrane component, and the remaining bulk of the protein is extra-cellular (outside the cell). The transmembrane component consists of single chain
glycoprotein
Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycos ...
repeats.
Because cadherins are Ca
2+ dependent, they have five tandem extracellular domain repeats that act as the binding site for Ca
2+ ions.
Their extracellular domain interacts with two separate ''trans'' dimer conformations: strand-swap dimers (S-dimers) and X-dimers.
To date, over 100 types of cadherins in humans have been identified and sequenced.
The functionality of cadherins relies upon the formation of two identical subunits, known as homodimers.
The homodimeric cadherins create
cell-cell adhesion with cadherins present in the membranes of other cells through changing conformation from ''cis''-dimers to ''trans''-dimers.
Once the cell-cell adhesion between cadherins present in the cell membranes of two different cells has formed, adherens junctions can then be made when protein complexes, usually composed of
α-, β-, and γ-catenins, bind to the cytoplasmic portion of the cadherin.
Regulatory proteins include p-120 catenin,
-catenin,
-catenin, and
vinculin. Binding of p-120 catenin and
-catenin to the homodimer increases the stability of the classical cadherin.
-catenin is engaged by p120-catenin complex, where vinculin is recruited to take a role in indirect association with actin cytoskeleton.
However, cadherin-catenin complex can also bind directly to the actin without the help of vinculin. Moreover, the strength of cadherin adhesion can increase by dephosphorylation of p120 catenin and the binding of
-catenin and vinculin.
Function
Development
Cadherins behave as both receptors and ligands for other molecules. During development, their behavior assists at properly positioning cells: they are responsible for the separation of the different tissue layers and for cellular migration. In the very early stages of development,
E-cadherins (epithelial cadherin) are most greatly expressed.
Many cadherins are specified for specific functions in the cell, and they are differentially expressed in a developing embryo. For example, during
neurulation
Neurulation refers to the folding process in vertebrate embryos, which includes the transformation of the neural plate into the neural tube. The embryo at this stage is termed the neurula.
The process begins when the notochord induces the formati ...
, when a
neural plate forms in an embryo, the tissues residing near the cranial neural folds have decreased N-cadherin expression.
Conversely, the expression of the N-cadherins remains unchanged in other regions of the neural tube that is located on the anterior-posterior axis of the vertebrate.
N-cadherins have different functions that maintain the cell structure, cell-cell adhesion, internal adhesions. They participate greatly in keeping the ability of the structured heart due to pumping and release blood. Because of the contribution of N-cadherins adhering strongly between the
cardiomyocytes, the heart can overcome the fracture, deformation, and fatigue that can result from the blood pressure.
N-cadherin takes part in the development of the heart during
embryogenesis
An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
, especially in sorting out of the precardiac mesoderm. N-cadherins are robustly expressed in precardiac mesoderm, but they do not take a role in cardiac linage. An embryo with N-cadherin mutation still forms the primitive heart tube; however, N-cadherin deficient mice will have difficulties in maintaining the cardiomyocytes development.
The myocytes of these mice will end up with dissociated myocytes surrounding the endocardial cell layer when they cannot preserve the cell adhesion due to the heart starting to pump. As a result, the cardiac outflow tract will be blocked causing cardiac swelling.The expression of different types of cadherins in the cells varies dependent upon the specific differentiation and specification of an organism during development. Cadherins play a vital role in the migration of cells through the
epithelial-mesenchymal transition (EMT), which requires cadherins to form adherents junctions with neighboring cells. In neural crest cells, which are transient cells that arise in the developing organism during gastrulation and function in the patterning of the vertebrate body plan, the cadherins are necessary to allow migration of cells to form tissues or organs.
In addition, cadherins that are responsible in the EMT event in early development have also been shown to be critical in the reprogramming of specified adult cells into a pluripotent state, forming
induced pluripotent stem cells (iPSCs).
After development, cadherins play a role in maintaining cell and tissue structure, and in cellular movement.
Regulation of cadherin expression can occur through promoter methylation among other epigenetic mechanisms.
Tumour metastasis
The E-cadherin–catenin complex plays a key role in cellular adhesion; loss of this function has been associated with increased invasiveness and metastasis of tumors. The suppression of E-cadherin expression is regarded as one of the main molecular events responsible for dysfunction in cell-cell adhesion, which can lead to local invasion and ultimately tumor development. Because E-cadherins play an important role in tumor suppression, they are also referred to as the "suppressors of invasion".
Correlation to cancer
It has been discovered that cadherins and other additional factors are correlated to the formation and growth of some cancers and how a tumor continues to grow. The E-cadherins, known as the epithelial cadherins, are on the surface of one cell and can bind with those of the same kind on another to form bridges.
The loss of the cell adhesion molecules, E cadherins, is causally involved in the formation of epithelial types of cancers such as carcinomas. The changes in any types of cadherin expression may not only control tumor cell adhesion but also may affect signal transduction leading to the cancer cells growing uncontrollably.
In epithelial cell cancers, disrupted cell to cell adhesion might lead to the development of secondary malignant growths; they are distant from the primary site of cancer and can result from the abnormalities in the expression of E-cadherins or its associated
catenins.
CAMs such as the cadherin glycoproteins that normally function as the glue and holds cells together act as important mediators of cell to cell interactions. E-cadherins, on the surface of all epithelial cells, are linked to the actin cytoskeleton through interactions with catenins in the cytoplasm. Thus, anchored to the cytoskeleton, E-cadherins on the surface of one cell can bind with those on another to form bridges. In epithelial cell cancers, disrupted cell-cell adhesion that might lead to metastases can result from abnormalities in the expression of E-cadherin or its associated
catenins.
Correlation to endometrium and embryogenesis
This family of glycoproteins is responsible for calcium-dependent mechanism of intracellular adhesion. E-cadherins are crucial in embryogenesis during several processes, including gastrulation, neurulation, and organogenesis. Furthermore, suppression of E-cadherins impairs intracellular adhesion. The levels of these molecules increase during the luteal phase while their expression is regulated by progesterone with endometrial calcitonin.
Types
There are said to be over 100 different types of cadherins found in vertebrates, which can be classified into four groups: classical, desmosomal, protocadherins, and unconventional.
These large amount of diversities are accomplished by having multiple cadherin encoding genes combined with alternative RNA splicing mechanisms. Invertebrates contain fewer than 20 types of cadherins.
Classical
Different members of the cadherin family are found in different locations.
*
CDH1 – E-cadherin (epithelial): E-cadherins are found in epithelial tissue; not to be confused with the
APC/C activator protein CDH1.
*
CDH2 – N-cadherin (neural): N-cadherins are found in neurons
*
CDH12 – cadherin 12, type 2 (N-cadherin 2)
*
CDH3 – P-cadherin (placental): P-cadherins are found in the placenta.
Desmosomal
*
Desmoglein (
DSG1
Desmoglein-1 is a protein that in humans is encoded by the ''DSG1'' gene. Desmoglein-1 is expressed everywhere in the skin epidermis, but mainly it is expressed in the superficial upper layers of the skin epidermis.
Function
Desmosomes are ce ...
,
DSG2
Desmoglein-2 is a protein that in humans is encoded by the ''DSG2'' gene. Desmoglein-2 is highly expressed in epithelial cells and cardiomyocytes. Desmoglein-2 is localized to desmosome structures at regions of cell-cell contact and functions t ...
,
DSG3,
DSG4)
*
Desmocollin (
DSC1,
DSC2,
DSC3)
Protocadherins
Protocadherins are the largest mammalian subgroup of the cadherin superfamily of homophilic cell-adhesion proteins.
Unconventional/ungrouped
See also
*
Masatoshi Takeichi
*
Catenin
*
List of target antigens in pemphigus
References
Further reading
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
* - view cadherin structure in interactive 3D
Cadherin domainin
PROSITE
The cadherin family*
{{Epithelial tissue
Cell adhesion proteins
Transmembrane proteins
Cadherins