CDKN2A
   HOME

TheInfoList



OR:

''CDKN2A'', also known as cyclin-dependent kinase inhibitor 2A, is a
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
which in humans is located at chromosome 9, band p21.3. It is ubiquitously expressed in many tissues and cell types. The gene codes for two
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s, including the INK4 family member
p16 p16 (also known as p16INK4a, cyclin-dependent kinase inhibitor 2A, CDKN2A, multiple tumor suppressor 1 and numerous other synonyms), is a protein that slows cell division by slowing the progression of the cell cycle from the G1 phase to the ...
(or p16INK4a) and p14arf. Both act as tumor suppressors by regulating the
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
. p16 inhibits cyclin dependent kinases 4 and 6 ( CDK4 and CDK6) and thereby activates the retinoblastoma (Rb) family of proteins, which block traversal from G1 to S-phase. p14ARF (known as p19ARF in the mouse) activates the p53 tumor suppressor. Somatic mutations of ''CDKN2A'' are common in the majority of human cancers, with estimates that ''CDKN2A'' is the second most commonly inactivated gene in cancer after ''p53''. Germline mutations of ''CDKN2A'' are associated with familial
melanoma Melanoma is the most dangerous type of skin cancer; it develops from the melanin-producing cells known as melanocytes. It typically occurs in the skin, but may rarely occur in the mouth, intestines, or eye (uveal melanoma). In very rare case ...
, glioblastoma and
pancreatic cancer Pancreatic cancer arises when cell (biology), cells in the pancreas, a glandular organ behind the stomach, begin to multiply out of control and form a Neoplasm, mass. These cancerous cells have the malignant, ability to invade other parts of ...
. The ''CDKN2A'' gene also contains one of 27 SNPs associated with increased risk of
coronary artery disease Coronary artery disease (CAD), also called coronary heart disease (CHD), or ischemic heart disease (IHD), is a type of cardiovascular disease, heart disease involving Ischemia, the reduction of blood flow to the cardiac muscle due to a build-up ...
.


Structure


Gene

The ''CDKN2A'' gene resides on chromosome 9 at the band 9p21 and contains 8
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence ...
s. This gene encodes two proteins,
p16 p16 (also known as p16INK4a, cyclin-dependent kinase inhibitor 2A, CDKN2A, multiple tumor suppressor 1 and numerous other synonyms), is a protein that slows cell division by slowing the progression of the cell cycle from the G1 phase to the ...
and p14ARF, which are transcribed from the same second and third exons but alternative first exons: p16 from exon 1α and ARF from exon 1β. As a result, they are translated from different reading frames and therefore possess completely different amino acid sequences. In addition to p16 and ARF, this gene produces 4 other isoforms through
alternative splicing Alternative splicing, alternative RNA splicing, or differential splicing, is an alternative RNA splicing, splicing process during gene expression that allows a single gene to produce different splice variants. For example, some exons of a gene ma ...
.


Proteins


p16

This protein belongs to the CDKN2 cyclin-dependent kinase inhibitor family. p16 comprises four ankyrin repeats, each spanning a length of 33 amino acid residues and, in the
tertiary structure Protein tertiary structure is the three-dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains and the ...
, forming a
helix-turn-helix motif Helix-turn-helix is a DNA-binding domain (DBD). The helix-turn-helix (HTH) is a major structural motif capable of binding DNA. Each monomer incorporates two alpha helix, α helices, joined by a short strand of amino acids, that bind to the majo ...
. One exception is the second ankyrin repeat, which contains only one helical turn. These four motifs are connected by three loops such that they are oriented perpendicular to the helical axes. According to its
solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
-accessible surface representation, p16 features clustered charged groups on its surface and a pocket located on the right side with a negatively charged left inner wall and a positively charged right inner wall.


p14ARF

The size of this protein is 14  kDa in humans. Within the N-terminal half of ARF are highly
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
domains that serve as mitochondrial import sequences.


Function


P14ARF

P14ARF is a central actor of the cell cycle regulation process as it participates to the ARF- MDM2-p53 pathway and the Rb- E2F-1 pathway. It is the physiological inhibitor of MDM2, an E3 ubiquitin ligase controlling the activity and stability of P53, and loss of P14ARF activity may have a similar effect as loss of P53. P14ARF induces cell cycle arrest in G2 phase and subsequent
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
in a P53-dependent and P53-independent manner, and thus is regarded as a tumor suppressor. In addition, P14ARF could down-regulate E2F-dependent transcription and plays a role in the control of the G1 to S
phase transition In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
as well.


P16(INK4A)

P16 interacts with Rb and controls the G1 to S transition. It binds to CDK4/6 inhibiting its kinase activity and prevents Rb phosphorylation. Therefore, Rb remains associated with transcription factor E2F1, preventing transcription of E2F1 target genes which are crucial for the G1/S transition. During this process, a feedback loop exists between P16 and Rb, and P16 expression is controlled by Rb. P16/Rb pathway collaborates with the mitogenic signaling cascade for the induction of reactive oxygen species, which activates the protein kinase C delta, leading to an irreversible cell cycle arrest. Thus P16 participates not only in the initiation but also in the maintenance of cellular senescence, as well in tumor suppression. On the other hand, some specific tumors harbor high levels of P16, and its function in limitation of tumorigenic progression has been inactivated via the loss of Rb.


Clinical relevance

In human cancer cell lines derived from various tumor types, a high frequency of genetic and epigenetic alterations (e.g., promoter hyper-methylation,
homozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mos ...
deletion or mutation) in the ''CDKN2A'' gene has been observed. Accordingly, epigenetic/genetic modulation of changes in ''CDKN2A'' might be a promising strategy for prevention or therapy of cancer. The ''CDKN2A'' gene is located on the chromosome 9p21 locus, which is intriguing for several reasons. First, this region is well known in cancer genetics as one of the most common sites of deletions leading to hereditary forms of cutaneous malignant melanoma. Second, genome wide association studies have reported a significant association of chromosome 9p21 with coronary artery disease and myocardial infarction as well as the progression of atherosclerosis. Furthermore, changes in ''CDKN2A'' status are highly variable depending on the type of cancer. In addition to skin cancer such as
melanoma Melanoma is the most dangerous type of skin cancer; it develops from the melanin-producing cells known as melanocytes. It typically occurs in the skin, but may rarely occur in the mouth, intestines, or eye (uveal melanoma). In very rare case ...
, changes of ''CDKN2A'' have been described in a wide spectrum of cancer types such as gastric lymphoma,
Burkitt's lymphoma Burkitt's lymphoma is a cancer of the lymphatic system, particularly B lymphocytes found in the germinal center. It is named after Denis Parsons Burkitt, the Irish surgeon who first described the disease in 1958 while working in equatorial Africa ...
, head & neck squamous cell carcinoma, glioma, oral cancer, pancreatic adenocarcinoma, non-small cell lung carcinomas, esophageal squamous cell carcinoma, gastric cancer, bladder cancer,
osteosarcoma An osteosarcoma (OS) or osteogenic sarcoma (OGS) is a cancerous tumor in a bone. Specifically, it is an aggressive malignant neoplasm that arises from primitive transformed cells of mesenchyme, mesenchymal origin (and thus a sarcoma) and that exhi ...
,
colorectal cancer Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the Colon (anatomy), colon or rectum (parts of the large intestine). Signs and symptoms may include Lower gastrointestinal ...
,
breast cancer Breast cancer is a cancer that develops from breast tissue. Signs of breast cancer may include a Breast lump, lump in the breast, a change in breast shape, dimpling of the skin, Milk-rejection sign, milk rejection, fluid coming from the nipp ...
, cervical cancer, epithelial ovarian carcinoma,
endometrial cancer Endometrial cancer is a cancer that arises from the endometrium (the epithelium, lining of the uterus or womb). It is the result of the abnormal growth of cells (biology), cells that can invade or spread to other parts of the body. The first s ...
and
prostate cancer Prostate cancer is the neoplasm, uncontrolled growth of cells in the prostate, a gland in the male reproductive system below the bladder. Abnormal growth of the prostate tissue is usually detected through Screening (medicine), screening tests, ...
.


Familial melanoma

''CDKN2A'' is made up of four sections of exons – exon 1β, exon 1α, exon 2, and exon 3. These exons are used to create two proteins named p16 and p14ARF. Protein p16, created by exon 1α and exon 2, is responsible for tumor creation of genetic melanoma. When working normally, p16 binds to the cyclin dependent kinases CDK4 to inhibit their ability to create tumors, but when inactivated the suppression no longer occurs. When a mutation occurs in protein p16, it prevents the protein kinase of CDK4, which results in the inactivation of the tumor suppressor gene. This starts the development of
melanoma Melanoma is the most dangerous type of skin cancer; it develops from the melanin-producing cells known as melanocytes. It typically occurs in the skin, but may rarely occur in the mouth, intestines, or eye (uveal melanoma). In very rare case ...
. Melanoma only occurs in a small proportion of the population. If only two family members have melanoma, there is a 5% chance somebody in the next generation will acquire the mutated gene. Also, there is a 20-40% chance of getting hereditary melanoma in a family if 3 or more people in the past generation had melanoma. For those who carry the hereditary mutated gene ''CDKN2A'', acquiring skin cancer is a lot easier. Those who have the gene are far more likely to get melanoma a second or third time compared to those who don't genetically have this gene. The population that is affected by this mutation has a high familial history of melanoma or atypical moles and birth marks in large numbers, a history of primary melanoma/cancers in general,
immunosuppression Immunosuppression is a reduction of the activation or efficacy of the immune system. Some portions of the immune system itself have immunosuppressive effects on other parts of the immune system, and immunosuppression may occur as an adverse react ...
, skin that burns easily and doesn't tan, freckling, blue eyes, red hair, or a history of blistering. People with these high risk factors are more likely to carry inherited mutations in ''CDKN2A''. For those who have a gene mutation, the severity is also dependent on the environmental surroundings. Out of those who carry the gene, those who express the phenotype and actually developed melanoma have a history of more sun exposure, and light skin compared to those who also had the gene but never actually developed melanoma. This suggests that this gene co-works with ones surrounding environment. If two individuals are selected who carry the ''CDKN2A'' mutation, and both genetically have the same probability of acquiring skin cancer, but one is from Australia and the other is from Europe, there is a 58% the European will acquire cancer compared to a 91% chance the Australian will get it. This is because the factors mentioned earlier pertaining to those who are more susceptible to the disease and also dependent on the amount of sunscreen one wears and the UV radiation potency in their environment.


Clinical marker

A multi-locus genetic risk score study based on a combination of 27 loci, including the ''CDKN2A'' gene, identified individuals at increased risk for both incident and recurrent coronary artery disease events, as well as an enhanced clinical benefit from statin therapy. The study was based on a community cohort study (the Malmo Diet and Cancer study) and four additional randomized controlled trials of primary prevention cohorts (JUPITER and ASCOT) and secondary prevention cohorts (CARE and PROVE IT-TIMI 22).


Aging

Activation of the ''CDKN2A'' locus promotes the
cellular senescence Cellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of appro ...
tumor suppressor mechanism, which is a permanent form of growth arrest. As senescent cells accumulate with aging, expression of ''CDKN2A'' increases exponentially with aging in all mammalian species tested to date, and has been argued to serve as a biomarker of physiological age. Notably, a recent survey of cellular senescence induced by multiple treatments to several cell lines does not identify ''CDKN2A'' as belonging to a "core signature" of senescence markers.


In animals

A variant in the ''CDKN2A'' locus present in the founder of Bernese mountain dogs around 200 years ago predisposes the breed to histiocytic sarcoma.


References


Sources

*


External links

* {{UCSC gene info, CDKN2A Genes