HOME

TheInfoList



OR:

A building envelope or building enclosure is the physical separator between the conditioned and unconditioned environment of a
building A building or edifice is an enclosed Structure#Load-bearing, structure with a roof, walls and window, windows, usually standing permanently in one place, such as a house or factory. Buildings come in a variety of sizes, shapes, and functions, a ...
, including the resistance to air, water, heat, light, and noiseSyed, Asif. ''Advanced building technologies for sustainability''. Hoboken, N.J.: John Wiley & Sons, Inc., 2012. 115. Print. transfer.


Discussion

The building envelope or enclosure is all of the elements of the outer shell that maintain a dry, heated, or cooled indoor environment and facilitate its climate control. Building envelope design is a specialized area of architectural and engineering practice that draws from all areas of building science and indoor climate control. The many functions of the building envelope can be separated into three categories:Straube, J.F., Burnett, E.F.P. ''Building Science for Building Enclosures''. Building Science Press, Westford, 2005. * Support (to resist and transfer structural and dynamic loads) * Control (the flow of matter and energy of all types) * Finish (to meet desired aesthetics on the inside and outside) The control function is at the core of good performance, and in practice focuses, in order of importance, on rain control, air control, heat control, and vapor control.


Water and water vapor control

Control of rain is most fundamental, and there are numerous strategies to this end, namely, perfect barriers, drained screens, and mass / storage systems. One of the main purposes of a
roof A roof (: roofs or rooves) is the top covering of a building, including all materials and constructions necessary to support it on the walls of the building or on uprights, providing protection against rain, snow, sunlight, extremes of tempera ...
is to resist water. Two broad categories of roofs are flat and pitched. Flat roofs actually slope up to 10° or 15° but are built to resist intrusion from standing water. Pitched roofs are designed to shed water but not resist standing water intrusion which can occur during wind-driven rain or ice damming. Typically residential, pitched roofs are covered with an underlayment material beneath the roof covering material as a second line of defense. Domestic roof construction may also be ventilated to help remove moisture from leakage and condensation. Walls do not get as severe water exposure as roofs but still leak water. Types of wall systems with regard to water penetration are ''barrier'', ''drainage'' and ''surface-sealed walls''. Barrier walls are designed to allow water to be absorbed but not penetrate the wall, and include concrete and some masonry walls. Drainage walls allow water that leaks into the wall to drain out such as cavity walls. Drainage walls may also be ventilated to aid drying such as rainscreen and pressure equalization wall systems. Sealed-surface walls do not allow any water penetration at the exterior surface of the siding material. Generally most materials will not remain sealed over the long term and this system is very limited, but ordinary residential construction often treats walls as sealed-surface systems relying on the siding and an underlayment layer sometimes called housewrap. Moisture can enter basements through the walls or floor. Basement waterproofing and drainage keep the walls dry and a moisture barrier is needed under the floor.


Air control

Control of airflow is important to ensure indoor air quality, control energy consumption, avoid condensation (and thus help ensure durability), and to provide comfort. Control of air movement includes flow through the enclosure (the assembly of materials that perform this function is termed the air barrier system) or through components of the building envelope (interstitial) itself, as well as into and out of the interior space, (which can affect
building insulation Building insulation is material used in a building (specifically the building envelope) to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal insulation, thermal purposes, the term also applies to ...
performance greatly). Hence, air control includes the control of windwashing (cold air passing through insulation) and convective loops which are air movements within a wall or ceiling that may result in 10% to 20% of the heat loss alone. The physical components of the envelope include the foundation,
roof A roof (: roofs or rooves) is the top covering of a building, including all materials and constructions necessary to support it on the walls of the building or on uprights, providing protection against rain, snow, sunlight, extremes of tempera ...
, walls, doors,
window A window is an opening in a wall, door, roof, or vehicle that allows the exchange of light and may also allow the passage of sound and sometimes air. Modern windows are usually glazed or covered in some other transparent or translucent ma ...
s, ceiling, and their related barriers and insulation. The dimensions, performance and compatibility of materials, fabrication process and details, connections and interactions are the main factors that determine the effectiveness and durability of the building enclosure system. Common measures of the effectiveness of a building envelope include physical protection from weather and climate (comfort), indoor air quality (hygiene and public health), durability and energy efficiency. In order to achieve these objectives, all building enclosure systems must include a solid structure, a drainage plane, an air barrier, a thermal barrier, and may include a vapor barrier. Moisture control (e.g. damp proofing) is essential in all climates, but cold climates and hot-humid climates are especially demanding. Air sealing can improve the energy efficiency of a building by minimizing the amount of energy needed to heat or cool the building. This is especially pertinent in cold-climate buildings where space heating consumes the largest amount of energy. A blower door test can be used to test the quality of the air sealing of the building envelope. Smoke pencils can be used to detect gaps and caulking and weather-stripping can be used to improve air sealing.
HVAC Heating, ventilation, and air conditioning (HVAC ) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. ...
systems can ensure that a building’s air intake is both adequate, safe, and energy efficient.


Thermal envelope

The thermal envelope, or heat flow control layer, is part of a building envelope but may be in a different location such as in a ceiling. The difference can be illustrated by the fact that an insulated attic floor is the primary thermal control layer between the inside of the house and the exterior while the entire roof (from the surface of the roofing material to the interior paint finish on the ceiling) is part of the building envelope. Building envelope
thermography Infrared thermography (IRT), thermal video or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared im ...
involves using an infrared camera to view temperature anomalies on the interior and exterior surfaces of the structure. Analysis of infrared images can be useful in identifying moisture issues from water intrusion, or interstitial condensation. Other types of anomalies that can be detected are thermal bridging, continuity of insulation and air leakage, however this requires a temperature differential between the inside and outside ambient temperatures.Faulkner, Ray. ''Infrared Building Surveys''. Portsmouth, United Kingdom: iRed, 2017.
/ref>


See also

* * * * * *


References


External links


Training Material (software, presentation slides, e-textbook, case studies, templates) on Building Envelope - Natural Resources Canada

Ontario Building Envelope Council

British Columbia Building Envelope Council

Alberta Building Envelope Council-South Chapter
{{Authority control Construction Moisture protection Thermal protection Architectural elements