Breit–Wheeler Process
   HOME

TheInfoList



OR:

The Breit–Wheeler process or Breit–Wheeler pair production is a proposed physical process in which a
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
pair is created from the collision of two
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta (for example, gamma photons). The multiphoton Breit–Wheeler process, also referred to as nonlinear Breit–Wheeler or strong field Breit–Wheeler in the literature, occurs when a high-energy probe photon decays into pairs propagating through a strong
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
(for example, a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
pulse). In contrast with the linear process, this can take the form of γ + n ω → e+ e, where n represents the number of photons, and ω represents the coherent laser field. The inverse process, e+ e → γ γ′, in which an electron and a positron collide and annihilate to generate a pair of gamma photons, is known as
electron–positron annihilation Electron–positron annihilation occurs when an electron () and a positron (, the electron's antiparticle) collide. At low energies, the result of the collision is the annihilation of the electron and positron, and the creation of energetic ph ...
or the Dirac process for the name of the physicist who first described it theoretically and anticipated the Breit–Wheeler process. This mechanism is theoretically characterized by a very weak probability, so producing a significant number of pairs requires two extremely bright, collimated sources of photons having
photon energy Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequenc ...
close to or above the electron and positron rest mass energy. Manufacturing such a source, for instance, a gamma-ray laser, is still a technological challenge. In many experimental configurations, pure Breit–Wheeler is dominated by other more efficient pair creation processes that screen pairs produced via this mechanism. The Dirac process ( pair annihilation) has, on the other hand, been extensively verified. This is also the case for the multi-photon Breit–Wheeler, which was observed at the
Stanford Linear Accelerator Center SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a Federally funded research and development centers, federally funded research and development center in Menlo Park, California, Menlo Park, Ca ...
in 1997 by colliding high-energy electrons with a counter-propagating terawatt laser pulse. Although this mechanism is still one of the most difficult to be observed experimentally on Earth, it is of considerable importance for the absorption of high-energy photons travelling cosmic distances. The photon–photon and the multiphoton Breit–Wheeler processes are described theoretically by the theory of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
.


History

The photon–photon Breit–Wheeler process was described theoretically by
Gregory Breit Gregory Breit (, ; July 14, 1899 – September 13, 1981) was an American physicist born in Mykolaiv, Russian Empire (now Mykolaiv, Ukraine). He was a professor at New York University (1929–1934), University of Wisconsin–Madison (1934–194 ...
and
John A. Wheeler John Archibald Wheeler (July 9, 1911April 13, 2008) was an American theoretical physicist. He was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr to e ...
in 1934 in ''
Physical Review ''Physical Review'' is a peer-reviewed scientific journal. The journal was established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the Ame ...
''. It followed previous theoretical work of
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
on antimatter and pair annihilation. In 1928, Paul Dirac's work proposed that electrons could have positive and negative energy states following the framework of relativistic quantum theory but did not explicitly predict the existence of a new particle.


Experimental observations


Photon–photon Breit–Wheeler possible experimental configurations

Although the process is one of the manifestations of the
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame. The two differ only by a multiplicative constant and the units of measurement. The principle is described by the physicist Albert Einstei ...
, as of 2017, the pure Breit–Wheeler has never been observed in practice because of the difficulty in preparing colliding
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
beams and the very weak probability of this mechanism. Recently, different teams have proposed novel theoretical studies on possible experimental configurations to finally observe it on Earth. In 2014, physicists at
Imperial College London Imperial College London, also known as Imperial, is a Public university, public research university in London, England. Its history began with Prince Albert of Saxe-Coburg and Gotha, Prince Albert, husband of Queen Victoria, who envisioned a Al ...
proposed a relatively simple way to physically demonstrate the Breit–Wheeler process. The collider experiment that the physicists proposed involves two key steps. First, they would use an extremely powerful high-intensity laser to accelerate electrons to nearly the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. They would then fire these electrons into a slab of gold to create a beam of photons a billion times more energetic than those of visible light. The next stage of the experiment involves a tiny gold can called a
hohlraum In radiation thermodynamics, a hohlraum (; a non-specific German word for a "hollow space", "empty room", or "cavity") is a cavity whose walls are in radiative equilibrium with the radiant energy within the cavity. First proposed by Gustav Kir ...
(German for 'empty room' or 'cavity'). Scientists would fire a high-energy laser at the inner surface of this hohlraum to create a thermal radiation field. They would then direct the photon beam from the first stage of the experiment through the centre of the hohlraum, causing the photons from the two sources to collide and form electrons and positrons. It would then be possible to detect the formation of the electrons and positrons when they exited the can.
Monte Carlo simulation Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be det ...
s suggest that this technique is capable of producing of the order of 105 Breit–Wheeler pairs in a single shot. In 2016, a second novel experimental setup was proposed theoretically to demonstrate and study the Breit–Wheeler process by colliding two high-energy photon sources (composed of non-coherent hard x-ray and gamma-ray photons) generated from the interaction of two extremely intense lasers on solid thin foils or gas jets. The forthcoming short-pulse extremely intense lasers, laser interaction with solid target will be the place of strong radiative effects driven by the nonlinear inverse quantum scattering. This effect, negligible so far, will become a dominant cooling mechanism for the extremely relativistic electrons accelerated above the 100 
MeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
level at the laser-solid interface via different mechanisms.


Multiphoton Breit–Wheeler experiments

The multiphoton Breit–Wheeler process has already been observed and studied experimentally. One of the most efficient configurations to maximize the multiphoton Breit–Wheeler
pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers ...
consists on colliding head-on a bunch of gamma photon with a counter-propagating (or with a slight collision angle, the co-propagating configuration being the less efficient configuration) ultra-high intensity laser pulse. To first create the photons and then have the pair production in an all-in-one setup, the similar configuration can be used by colliding
GeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
electrons. Depending on the laser intensity, these electrons will first radiate gamma photons via the so-called
non-linear inverse Compton scattering Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon (X-r ...
mechanism when interacting with the laser pulse. Still interacting with the laser, the photons then turn into multiphoton Breit–Wheeler electron–positron pairs. This method was used in 1997 at the
Stanford Linear Accelerator Center SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a Federally funded research and development centers, federally funded research and development center in Menlo Park, California, Menlo Park, Ca ...
. Researchers were able to conduct the multi-photon Breit–Wheeler process using electrons to first create high-energy photons, which then underwent multiple collisions to produce electrons and positrons, all within the same chamber. Electrons were accelerated in the linear accelerator to an energy of 46.6 GeV before being sent head-on into a
Neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
(Nd:glass)
linear polarized In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function'' (or '' mapping''); * linearity of a ''polynomial''. An example of a linear function is the function defined by f(x)=( ...
laser of intensity 1018 W/cm2 (maximal
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
amplitude of around 6×109 V/m), of
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
527 nanometers and duration 1.6 picoseconds. In this configuration, it has been estimated that photons of energy up to 29 GeV were generated. This led to the yield of 106 ±14 positrons with a broad energy spectrum in the GeV level (peak around 13 GeV). The aforementioned experiment may be reproduced in the future at
SLAC SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored ...
with more powerful laser technologies. The use of higher laser intensities (1020 W/cm2) is now easily achievable with short-pulse titanium-sapphire laser solutions that would significantly enhance process efficiencies (inverse nonlinear Compton and nonlinear Breit–Wheeler pair creation) leading to several orders of magnitude higher antimatter production, enabling higher-resolution measurements, additional mass-shift, as well as nonlinear and spin effects. The extreme intensities expected to be available in future multi-petawatt laser systems will allow all-optical, laser–electron collision experiments where the electron beam is generated from direct laser interaction with a gas jet in a so-called laser wakefield acceleration regime. The resulting electron bunch is then made to interact with a second high-power laser in order to study QED processes. The feasibility of an all-optical multi-photon Breit–Wheeler pair production scheme has first been proposed theoretically in Implementation of this scheme is restricted to multi-beam short-pulse extreme-intensity laser facilities such as the CILEX-Apollon and
ELI Eli most commonly refers to: * Eli (name), a given name, nickname and surname * Eli (biblical figure) Eli or ELI may also refer to: Film * ''Eli'' (2015 film), a Tamil film * ''Eli'' (2019 film), an American horror film Music * ''Eli'' (Jan ...
systems (CPA titanium sapphire technology at 0.8 micrometer, duration of 15–30 femtoseconds). The generation of electron beams of few GeV and few nanocoulomb is possible with a first laser of 1 petawatt combined with the use of tuned and optimized gas-jet density profiles such as two-step profiles. Strong pair generation can be achieved by colliding head-on this electron beam with a second laser of intensity above 1022 W/cm2. In this configuration at this level of intensity, theoretical studies predict that several hundreds of pico-Coulombs of antimatter could be produced. This experimental setup could even be one of the most prolific positron yield factory. This all-optical scenario may be preliminary tested with lower laser intensities of the order of 1021 W/cm2. In July 2021 evidence consistent with the process was reported by the
STAR detector The STAR detector (for Solenoidal Tracker at RHIC) is one of the four experiments at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory, United States. The primary scientific objective of STAR is to study the formation an ...
one of the four experiments at the
Relativistic Heavy Ion Collider The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy- ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used ...
although it was unclear if it was due to
massless In particle physics, a massless particle is an elementary particle whose invariant mass is zero. At present the only confirmed massless particle is the photon. Other particles and quasiparticles Standard Model gauge bosons The photon (carrier of ...
photons or massive virtual photons,
vacuum birefringence A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
was also studied obtaining evidence enough to claim the first known observation of the process.


See also

*
Two-photon physics Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the inten ...


References

__FORCETOC__ {{DEFAULTSORT:Breit-Wheeler process Photonics Hypotheses in physics Quantum electrodynamics