Bray–Moss–Libby Model
   HOME

TheInfoList



OR:

In premixed turbulent combustion, Bray–Moss–Libby (BML) model is a closure model for a scalar field, built on the assumption that the reaction sheet is infinitely thin compared with the turbulent scales, so that the scalar can be found either at the state of burnt gas or unburnt gas. The model is named after Kenneth Bray, J. B. Moss and Paul A. Libby.


Mathematical description

Let us define a non-dimensional scalar variable or progress variable c such that c=0 at the unburnt mixture and c=1 at the burnt gas side. For example, if T_u is the unburnt gas temperature and T_b is the burnt gas temperature, then the non-dimensional temperature can be defined as :c=\frac. The progress variable could be any scalar, i.e., we could have chosen the concentration of a reactant as a progress variable. Since the reaction sheet is infinitely thin, at any point in the flow field, we can find the value of c to be either unity or zero. The transition from zero to unity occurs instantaneously at the reaction sheet. Therefore, the probability density function for the progress variable is given by :P(c,\mathbf,t) = \alpha(\mathbf,t)\delta(c) + \beta(\mathbf,t)\delta(1-c) where \alpha(\mathbf,t) and \beta(\mathbf,t) are the probability of finding unburnt and burnt mixture, respectively and \delta is the
Dirac delta function In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
. By definition, the normalization condition leads to :\alpha(\mathbf,t)+\beta(\mathbf,t)=1. It can be seen that the mean progress variable, :\bar(\mathbf,t) = \int_0^1 c P(c,\mathbf,t)\, dc = \beta(\mathbf,t) is nothing but the probability of finding burnt gas at location \mathbf and at the time t. The density function is completely described by the mean progress variable, as we can write (suppressing the variables \mathbf,t) :P(c) = (1-\bar c)\delta(c) + \bar c\delta(1-c). Assuming constant pressure and constant molecular weight, ideal gas law can be shown to reduce to :\frac=\frac=\frac where \tau is the
heat release parameter In combustion, heat release parameter (or gas expansion parameter) is a dimensionless parameter which measures the amount of heat released by an adiabatic combustion process. It is defined as :q = \frac where *T_ is the adiabatic flame temperature ...
. Using the above relation, the mean density can be calculated as follows :\frac=1-\beta + \frac. The
Favre averaging Favre averaging is the density-weighted averaging method, used in variable density or compressible turbulent flows, in place of the Reynolds averaging. The method was introduced formally by the French physicist Alexandre Favre in 1965, although Osb ...
of the progress variable is given by :\tilde c \equiv \frac = \frac\frac. Combining the two expressions, we find :\bar=\beta = \frac and hence :\alpha = \frac. The density average is :\bar\rho = \frac. Peters, N. (1992). Fifteen lectures on laminar and turbulent combustion. Ercoftac Summer School, 1428.


General density function

If reaction sheet is not assumed to be thin, then there is a chance that one can find a value for c in between zero and unity, although in reality, the reaction sheet is mostly thin compared to turbulent scales. Nevertheless, the general form the density function can be written as :P(c,\mathbf,t) = \alpha(\mathbf,t)\delta(c) + \beta(\mathbf,t)\delta(1-c) + \gamma(\mathbf,t) f(c,\mathbf,t) where \gamma(\mathbf,t) is the probability of finding the progress variable which is undergoing reaction (where transition from zero to unity is effected). Here, we have :\alpha(\mathbf,t)+\beta(\mathbf,t)+\gamma(\mathbf,t) = 1 where \gamma is negligible in most regions.


References

{{DEFAULTSORT:Bray-Moss-Libby model Fluid dynamics Combustion Turbulence